Information Security Management in Picture Archiving and Communication Systems for the Healthcare Industry

Carrison KS Tong

Pamela Youde Nethersole Eastern Hospital & Tseung Kwan O Hospital, Hong Kong

Eric TT Wong

The Hong Kong Polytechnic University, Hong Kong

INTRODUCTION

Like other information systems in banking and commercial companies, information security is also an important issue in the healthcare industry. It is a common problem to have security incidences in an information system. Such security incidences include physical attacks, viruses, intrusions, and hacking. For instance, in the U.S.A., more than 10 million security incidences occurred in the year of 2003. The total loss was over \$2 billion. In the healthcare industry, damages caused by security incidences could not be measured only by monetary cost. The trouble with inaccurate information in healthcare systems is that it is possible that someone might believe it and do something that might damage the patient. In a

security event in which an unauthorized modification to the drug regime system at Arrowe Park Hospital proved to be a deliberate modification, the perpetrator received a jail sentence under the Computer Misuse Act of 1990. In another security event (The Institute of Physics and Engineering in Medicine, 2003), six patients received severe overdoses of radiation while being treated for cancer on a computerized medical linear accelerator between June 1985 and January 1987. Owing to the misuse of untested software in the control, the patients received radiation doses of about 25,000 rads while the normal therapeutic dose is 200 rads. Some of the patients reported immediate symptoms of burning and electric shock. Two died shortly afterward and others suffered scarring and permanent disability.

BS7799 is an information-security-management standard developed by the British Standards Institution (BSI) for an information-securitymanagement system (ISMS). The first part of BS7799, which is the code of practice for information security, was later adopted by the International Organization for Standardization (ISO) as ISO17799. The second part of BS7799 states the specification for ISMS. The picture-archiving and-communication system (PACS; Huang, 2004) is a clinical information system tailored for the management of radiological and other medical images for patient care in hospitals and clinics. It was the first time in the world to implement both standards to a clinical information system for the improvement of data security.

BACKGROUND

Information security is the prevention of, and recovery from, unauthorized or undesirable destruction, modification, disclosure, or use of information and information resources, whether accidental or intentional. A more proactive definition is the preservation of the confidentiality, integrity, and availability (CIA) of information and information resources. Confidentiality means that the information should only be disclosed to a selected group, either because of its sensitivity or its technical nature. Information integrity is defined as the assurance that the information used in making business decisions is created and maintained with appropriate controls to ensure that the information is correct, auditable, and reproducible. As far as information availability is concerned, information is said to be available when employees who are authorized access, and whose jobs require access, to the information can do so in a cost-effective manner that does not jeopardize the value of the information. Also, information must be consistently available to conduct business smoothly. Business-continuity planning (BCP) includes provisions for assuring the availability of the key resources (information, people, physical assets, tools, etc.) necessary to support the business function.

The origin of ISO17799/BS7799 goes back to the days of the UK Department of Trade and Industry's (DTI) Commercial Computer Security Centre (CCSC). Founded in May 1987, the CCSC had two major tasks. The first was to help vendors of IT security products by establishing a set of internationally recognised security-evaluation criteria and an associated evaluation and certification scheme. This ultimately gave rise to the information technology security-evaluation criteria (ITSEC) and the establishment of the UK ITSEC scheme. The second task was to help users by producing a code of good security practices and resulted in the Users Code of Practice that was published in 1989. This was further developed by the National Computing Centre (NCC) and later a consortium of users, primarily drawn from British industry, to ensure that the code was both meaningful and practical from a user's point of view. The final result was first published as the British Standards guidance document PD 0003, A Code of Practice for Information Security Management, and following a period of further public consultation, it was recast as British Standard BS7799: 1995. A second part, BS7799-2: 1998, was added in February 1998. Following an extensive revision and public consultation period in 1997, the first revision of the standard, BS7799: 1999, was published in April 1999. Part 1 of the standard was proposed as an ISO standard via the "fast track" mechanism in October 1999, and then published with minor amendments as ISO/IEC 17799: 2000 on December 1, 2000. BS7799-2: 2002 was officially launched on September 5, 2002.

PACS is a filmless (Dreyer, Mehta, & Thrall, 2001) and computerized method of communicating and storing medical image data such as computed radiographic (CR), digital radiographic (DR), computed tomographic (CT), ultrasound (US), fluoroscopic (RF), magnetic resonance (MRI), and other special X-ray (XA) images. A

8 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/information-security-management-picture-archiving/26332

Related Content

Hemoglobin Level Analysis in Hemodialysis Patients Treated With Erythropoiesis Stimulating Agents: A Neural Network Approach

J. D. Martín, Emilio Soria, A. Soldevila, M. Climente, L. M. Pallardóand Nicolás Victor Jiménez (2010). Intelligent Medical Technologies and Biomedical Engineering: Tools and Applications (pp. 145-164). www.irma-international.org/chapter/hemoglobin-level-analysis-hemodialysis-patients/43253

A Primitive Survey on Ultrasonic Imaging-Oriented Segmentation Techniques for Detection of Fetal Cardiac Chambers

Punya Prabha V.and Sriraam N. (2019). *International Journal of Biomedical and Clinical Engineering (pp. 69-79)*

www.irma-international.org/article/a-primitive-survey-on-ultrasonic-imaging-oriented-segmentation-techniques-for-detection-of-fetal-cardiac-chambers/233543

Breast Cancer Lesion Detection From Cranial-Caudal View of Mammogram Images Using Statistical and Texture Features Extraction

Kavya N, Sriraam N, Usha N, Bharathi Hiremath, Anusha Suresh, Sharath D, Venkatraman Band Menaka M (2020). *International Journal of Biomedical and Clinical Engineering (pp. 16-32).*

www.irma-international.org/article/breast-cancer-lesion-detection-from-cranial-caudal-view-of-mammogram-images-using-statistical-and-texture-features-extraction/240743

Sensing of Vital Signs and Transmission Using Wireless Networks

Yousef Jasemian (2009). *Mobile Health Solutions for Biomedical Applications (pp. 180-207)*. www.irma-international.org/chapter/sensing-vital-signs-transmission-using/26772

Elimination of Power Line Interference in ECG Signal Using Adaptive Filter, Notch Filter and Discrete Wavelet Transform Techniques

Srinivasa M.G.and Pandian P.S. (2019). *International Journal of Biomedical and Clinical Engineering (pp. 32-56).*

www.irma-international.org/article/elimination-of-power-line-interference-in-ecg-signal-using-adaptive-filter-notch-filter-and-discrete-wavelet-transform-techniques/219305