Chapter III

Different Views of Software Quality

Bernard Wong, University of Technology Sydney, Australia

Abstract

This chapter examines the different definitions of quality and compares the different models and frameworks for software quality evaluation. It will look at both historical and current literature. The chapter will give special attention to recent research on the Software Evaluation Framework, a framework for software evaluation, which gives the rationale for the choice of characteristics used in software quality evaluation, supplies the underpinning explanation for the multiple views of quality, and describes the areas of motivation behind software quality evaluation. The framework has its theoretical foundations on value-chain models, found in the disciplines of cognitive psychology and consumer research, and introduces the use of cognitive structures as a means of describing the many definitions of quality. The author hopes that this chapter will give researchers and practitioners a better understanding of the different views of software quality, why there are differences, and how to represent these differences.
Introduction

Adopting an appropriate Quality Assurance philosophy has been often viewed as the means of improving productivity and software quality (Hatton, 1993; Myers, 1993). However unless quality is defined, it is very difficult for an organization to know whether it has achieved quality clearly. To date, this has usually involved conformance to a standard such as AS3563 or ISO9001 or following the Capability Maturity Model of the SEI. The challenge often faced is that one finds as many definitions of quality as writers on the subject. Perhaps, the latter have been remarkably few in number considering the obvious importance of the concept and the frequent appearance of the term quality in everyday language.

Though the topic of software quality has been around for decades, software product quality research is still relatively immature, and today it is still difficult for a user to compare software quality across products. Researchers are still not clear as to what is a good measure of software quality because of the variety of interpretations of the meaning of quality, of the meanings of terms to describe its aspects, of criteria for including or excluding aspects in a model of software, and of the degree to which software development procedures should be included in the definition. A particularly important distinction is between what represents quality for the user and what represents quality for the developer of a software product.

Perceptions of software quality are generally formed on the basis of an array of cues. Most notably, these cues include product characteristics (Boehm et al., 1976; Carpenter & Murine, 1984; Cavano & McCall, 1978; McCall et al., 1977; Kitchenham & Pfleeger, 1996; Kitchenham & Walker, 1986; Sunazuka et al., 1985). The cues are often categorized as either extrinsic or intrinsic to the perceived quality. Simply, intrinsic cues refer to product characteristics that cannot be changed or manipulated without also changing the physical characteristics of the product itself; extrinsic cues are characteristics that are not part of the product (Olson & Jacoby, 1972). Price and brand are thus considered to be extrinsic with respect to product quality.

This chapter examines the different definitions of quality and compares the different models and frameworks for software quality evaluation. This chapter will address both the topics of interest for the information systems community and the software engineering community. It will look at both historical and current literature. The chapter will give special attention to recent research on the Software Evaluation Framework, a framework for software evaluation, which gives the rationale for the choice of characteristics used in software quality evaluation, supplies the underpinning explanation for the multiple views of quality, and describes the areas of motivation behind software quality...
Related Content

Reverse Innovation and the Bottom of the Pyramid Proposition: New Clothes for Old Garbs?
[www.irma-international.org/chapter/reverse-innovation-and-the-bottom-of-the-pyramid-proposition/96646/](www.irma-international.org/chapter/reverse-innovation-and-the-bottom-of-the-pyramid-proposition/96646/)

Improving Quality through the Use of Agile Methods in Systems Development: People and Values in the Quest for Quality
[www.irma-international.org/chapter/improving-quality-through-use-agile/26166/](www.irma-international.org/chapter/improving-quality-through-use-agile/26166/)

Information Evaluation: A Scientific and Comprehensive Approach
[www.irma-international.org/chapter/information-evaluation/84210/](www.irma-international.org/chapter/information-evaluation/84210/)

Market Trajectory: A Suggested Interpretation of Innovation Opportunities for Latecomer Firms
Hongru Xiong and Guisheng Wu (2014). *Quality Innovation: Knowledge, Theory, and Practices* (pp. 53-71).
[www.irma-international.org/chapter/market-trajectory/96647/](www.irma-international.org/chapter/market-trajectory/96647/)

Actor Network Theory Applied to Organizational Change: A Case Study
Carlos Páscoa and José Tribolet (2014). *Rethinking the Conceptual Base for New Practical Applications in Information Value and Quality* (pp. 233-248).
[www.irma-international.org/chapter/actor-network-theory-applied-to-organizational-change/84219/](www.irma-international.org/chapter/actor-network-theory-applied-to-organizational-change/84219/)