
112

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

DOI: 10.4018/978-1-5225-9384-3.ch004

ABSTRACT

This chapter considers algebra-dynamic models of parallel programs,
which are based on concepts of transition systems theory and algebra of
algorithms. The models of sequential and parallel multithreaded programs
for multicore processors and program models for graphics processing units
are constructed. The authors describe transformations of programs aimed at
transition from sequential to parallel versions (parallelization) and improving
performance of parallel programs in respect to execution time (optimization).
The transformations are based on using rewriting rules technique. The formal
model of program auto-tuning as an evolutional extension of transition systems
is proposed, and some properties of programs are considered.

INTRODUCTION

Development of multicore processors leads to increasing importance of
parallel programming aimed at standard, widely accessible computers,
and not just for specialized high-performance systems (Akhter & Roberts,
2006). However, there is one more direction of parallel programming which

Algebra-Dynamic Models
for CPU- and GPU-Parallel
Program Design and the
Model of Auto-Tuning

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 113

Algebra-Dynamic Models for CPU- and GPU-Parallel Program Design and the Model of Auto-Tuning

has received especial development recently, namely, the programming of
general-purpose tasks for graphics processing units (GPUs) (“General-Purpose
Computation on Graphics Hardware”, n.d.). Market requirements have led
to rapid development of GPUs and, at present, their computing capacity
considerably exceeds the capabilities of usual processors. Therefore, GPUs
were applied for solving the problems not concerned directly with graphics
processing. Research in these directions is supported by GPU developers: in
particular, NVIDIA company provides CUDA platform for general-purpose
computations on GPUs (“NVIDIA CUDA technology”, n.d.).

Despite the presence of specialized facilities for CUDA, development
of GPU programs remains a labor-consuming work, which requires from
a developer a knowledge about low-level details of hardware and software
platform. Therefore, there is a need of research in the area of automation
of software development process for GPUs. This chapter describes the
development of formal design methods, based on concepts of transition systems
theory, algebraic programming and algebra-dynamic models of programs
(Andon, Doroshenko, Tseytlin, & Yatsenko, 2007; Doroshenko, Zhereb,
& Yatsenko, 2010) with the use of rewriting rules technique (Doroshenko
& Shevchenko, 2006; “TermWare”, n.d.) for automated development of
efficient programs for GPUs. High-level models of programs and models
of program execution are developed for central processing unit (CPU) and
GPU. Application of rewriting rules and high-level models for automated
parallelization and optimization of programs for GPUs is described. The method
of automated transition between a high-level model of a program and a source
code, which is based on the use of special rewriting rules is proposed. This
chapter also considers the formal model of program auto-tuning constructed
as an evolutional extension of transition systems and properties of programs.

Currently there is a significant amount of research in the area of automation
of software development for graphics processors. Research community
examines problems of transition from sequential to parallel programs as
well as problems of optimization of existing parallel programs with the use
of GPUs. Particularly, the paper (Lee, Min, & Eigenmann, 2009) considers
the automatic transition from a multithreaded program implemented using
OpenMP technology (“OpenMP Application Programming Interface”, 2015)
to implementation of the same program on CUDA platform. Paper (Baskaran
et al., 2008) describes a platform for loop optimization in GPU programs.
Systems for automatic parallelization and optimization of programs from a

29 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/chapter/algebra-dynamic-models-for-cpu--and-

gpu-parallel-program-design-and-the-model-of-auto-

tuning/261570

Related Content

Parkinson's Disease: Neuro-Cognitive Perspective
 Soumya Jacob P. (2022). Bio-Inspired Algorithms and Devices for Treatment of

Cognitive Diseases Using Future Technologies (pp. 82-93).

www.irma-international.org/chapter/parkinsons-disease/298806

Multiobjective Cuckoo Search for Anticipating the Enemy's Movements in the

Battleground
Samiksha Goel, Arpita Sharmaand V. K. Panchal (2014). International Journal of

Applied Metaheuristic Computing (pp. 26-46).

www.irma-international.org/article/multiobjective-cuckoo-search-for-anticipating-the-enemys-

movements-in-the-battleground/119647

Modeling and Monitoring of Chemical System: CSTR Model
Majdi Mansouri, Hazem Numan Nounouand Mohamed Numan Nounou (2016).

Handbook of Research on Modern Optimization Algorithms and Applications in

Engineering and Economics (pp. 835-858).

www.irma-international.org/chapter/modeling-and-monitoring-of-chemical-system/147540

Test Suite Optimization Using Chaotic Firefly Algorithm in Software Testing
Abhishek Pandeyand Soumya Banerjee (2017). International Journal of Applied

Metaheuristic Computing (pp. 41-57).

www.irma-international.org/article/test-suite-optimization-using-chaotic-firefly-algorithm-in-

software-testing/187217

Quantum AI and IoT Cognitive Disease Data Security to Evade Quantum

Computing Attacks
Pavan Manjunath, Harish Sudarsananand Pritam Gajkumar Shah (2022). Bio-

Inspired Algorithms and Devices for Treatment of Cognitive Diseases Using Future

Technologies (pp. 242-263).

www.irma-international.org/chapter/quantum-ai-and-iot-cognitive-disease-data-security-to-

evade-quantum-computing-attacks/298815

http://www.igi-global.com/chapter/algebra-dynamic-models-for-cpu--and-gpu-parallel-program-design-and-the-model-of-auto-tuning/261570
http://www.igi-global.com/chapter/algebra-dynamic-models-for-cpu--and-gpu-parallel-program-design-and-the-model-of-auto-tuning/261570
http://www.igi-global.com/chapter/algebra-dynamic-models-for-cpu--and-gpu-parallel-program-design-and-the-model-of-auto-tuning/261570
http://www.igi-global.com/chapter/algebra-dynamic-models-for-cpu--and-gpu-parallel-program-design-and-the-model-of-auto-tuning/261570
http://www.irma-international.org/chapter/parkinsons-disease/298806
http://www.irma-international.org/article/multiobjective-cuckoo-search-for-anticipating-the-enemys-movements-in-the-battleground/119647
http://www.irma-international.org/article/multiobjective-cuckoo-search-for-anticipating-the-enemys-movements-in-the-battleground/119647
http://www.irma-international.org/chapter/modeling-and-monitoring-of-chemical-system/147540
http://www.irma-international.org/article/test-suite-optimization-using-chaotic-firefly-algorithm-in-software-testing/187217
http://www.irma-international.org/article/test-suite-optimization-using-chaotic-firefly-algorithm-in-software-testing/187217
http://www.irma-international.org/chapter/quantum-ai-and-iot-cognitive-disease-data-security-to-evade-quantum-computing-attacks/298815
http://www.irma-international.org/chapter/quantum-ai-and-iot-cognitive-disease-data-security-to-evade-quantum-computing-attacks/298815

