
1145

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 53

DOI: 10.4018/978-1-7998-3016-0.ch053

ABSTRACT

Software development is critically dependent on a number of factors. These factors include techno-logical
and anthropic-oriented ones. Software production is a multiple party process; it includes customer
and developer parties. Due to different expectations and goals of each side, the human factors become
mission-critical. Misconceptions in the expectations of each side may lead to misbalanced production;
the product that the developers produce may significantly differ from what the customers expect. This
misbalanced vision of the software product may result in a software de-livery crisis. To manage this
crisis, the authors recommend using software engineering methods. Software engineering is a discipline
which emerged from the so-called “software crisis” in the 1960s: it combines technical and anthropic-
oriented “soft” skills. To conquer the crisis, this chapter discusses general architecture patterns for
software and hardware systems; it provides instances of particular industries, such as oil and gas and
nuclear power production.

INTRODUCTION

This chapter focuses on human factor-related project lifecycle estimation and optimization, which are
based on software engineering methods and tools.

Enterprise systems are usually large-scale and complex; they combine hardware and software.
Managing development of large and complex software systems is a key problem in software engineer-
ing discipline. In the 1960s, this discipline emerged as a result of the so-called “software crisis”. This
term originated from the critical development complexity, which happened due to the rapid growth of
computational power. The challenge was so dramatic that the NATO had to arrange an invitation-only
conference, which brought together leading researchers and practitioners from the US and Europe to

Software Development Crisis:
Human-Related Factors’ Influence

on Enterprise Agility

Sergey Zykov
National Research University Higher School of Economics, Russia

1146

Software Development Crisis
﻿

search for a remedy. The conference was held in 1967 in Germany; its key participants were such famous
computer science professors and Turing Award winners as Alan Perlis from the USA, Edsger Dijkstra
from Holland, Friedrich Bauer from Germany, and Peter Naur from Denmark. Many of these researchers
were also the NATO Science Committee representatives of their countries. At that time, the computing
power of the machines (including the IBM B-5000) became so overwhelming that a number of software
development projects were late, over budget or totally unsuccessful. Irrespective of human efforts, the
complexity of the hardware and software systems was hard to cope with by means of the old methods
and techniques. At the same time, the term “crisis” was coined by F.Bauer; later on E.Dijkstra also used
it in his Turing Award lecture.

However, not only did the participants recognize the crisis state of software production management,
but they also announced a remedy. This was software engineering. The term was suggested by the same
F. Bauer, and the idea was that software developers could apply the engineering methods used in mate-
rial production to the emerging domain of large-scale software systems in order to make the software
projects more measurable, predictable and less uncertain. It appeared that this software engineering ap-
proach was feasible, though the methods and practices used had to differ substantially from those used in
large-scale and complex material production. The fundamental difference between large-scale software
and material production was the distribution of time and cost by the development lifecycle phases. In the
case of software, maintenance was the most time and cost consuming activity; it often exceeded 60% of
the expenses for the entire project (Schach, 2011). This is why the new software engineering discipline
was in need of new methodologies, techniques and tools.

Another distinct feature of software product development was that it involved a number of parties
with clearly different goals and expectations. These were end users or customers, developers and their
management. Due to multiple sides’ participation in the development of the software products, these
sides usually lacked common understanding of the resulting product: the customers often used business
terms, while the developers preferred technological jargon.

Currently, this same lack of common vision complicates the development processes; it is a possible
source of a local production crisis in terms of a certain software project. To deal with this kind of vision
incompatibility crisis, software engineers should add to their purely technical abilities a very special kind
of skillset also known as “soft” skills. These are teamwork, communications, negotiations, and basics of
risk management, to name a few. Thus, in order to address the crisis, which has a human factor-related
root cause, a high quality software engineer should possess a carefully selected blend of technical and
managerial skills.

BACKGROUND

Issues related to software and hardware system development, often referred to as systems of systems,
tend to become even more essential and critical in the enterprise context. One positive solution is creat-
ing uniform architectural patterns for such complex systems. To verify the patterns, specific instances
are required for particular industries, such as oil and gas and nuclear power production.

The general principles of describing the architecture, i.e. key components and relationships of the
software system (for instance, in terms of components and connectors), commonly used in software
engineering (Lattanze, 2008), are generally applicable for enterprise system engineering. Therewith,
top level architectural design is critical; it determines the key concepts and interfaces for software and

16 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-development-crisis/261073

Related Content

Addressing Privacy in Traditional and Cloud-Based Systems
Christos Kalloniatis, Evangelia Kavakliand Stefanos Gritzalis (2018). Computer Systems and Software

Engineering: Concepts, Methodologies, Tools, and Applications (pp. 1900-1930).

www.irma-international.org/chapter/addressing-privacy-in-traditional-and-cloud-based-systems/192952

Using Kolmogorov Complexity to Study the Coevolution of Header Files and Source Files of C-

alike Programs
Liguo Yu (2021). Research Anthology on Recent Trends, Tools, and Implications of Computer

Programming (pp. 814-824).

www.irma-international.org/chapter/using-kolmogorov-complexity-to-study-the-coevolution-of-header-files-and-source-

files-of-c-alike-programs/261055

Optimal Crashing and Buffering of Stochastic Serial Projects
Dan Trietsch (2012). Computer Engineering: Concepts, Methodologies, Tools and Applications (pp. 484-

495).

www.irma-international.org/chapter/optimal-crashing-buffering-stochastic-serial/62460

System-Level Design of NoC-Based Dependable Embedded Systems
Mihkel Tagel, Peeter Ellerveeand Gert Jervan (2011). Design and Test Technology for Dependable

Systems-on-Chip (pp. 1-36).

www.irma-international.org/chapter/system-level-design-noc-based/51394

Human-Computer Interaction and Artificial Intelligence: Multidisciplinarity Aiming Game

Accessibility
Sarajane Marques Peres, Clodis Boscarioli, Jorge Bidarraand Marcelo Fantinato (2012). Computer

Engineering: Concepts, Methodologies, Tools and Applications (pp. 1-18).

www.irma-international.org/chapter/human-computer-interaction-artificial-intelligence/62431

http://www.igi-global.com/chapter/software-development-crisis/261073
http://www.irma-international.org/chapter/addressing-privacy-in-traditional-and-cloud-based-systems/192952
http://www.irma-international.org/chapter/using-kolmogorov-complexity-to-study-the-coevolution-of-header-files-and-source-files-of-c-alike-programs/261055
http://www.irma-international.org/chapter/using-kolmogorov-complexity-to-study-the-coevolution-of-header-files-and-source-files-of-c-alike-programs/261055
http://www.irma-international.org/chapter/optimal-crashing-buffering-stochastic-serial/62460
http://www.irma-international.org/chapter/system-level-design-noc-based/51394
http://www.irma-international.org/chapter/human-computer-interaction-artificial-intelligence/62431

