
277

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

DOI: 10.4018/978-1-7998-3016-0.ch013

ABSTRACT

Instant demand of products and services by technologically active users has increased the demand for
open source software (OSS)-based applications. Unfortunately, with the complexity and lack of under-
standing of OSS-based systems, it becomes difficult for a testing team to remove the faults and the fault
removal rate becomes low in comparison to what it should be. This also results in generating new faults
during removal. Also, the rate at which the testing team detects/corrects fault need not be same during
the entire process of testing due to various reasons viz. change in testing strategy, understanding of
code, change in resources, etc. In the existing literature on OSS, authors have developed many models
considering the above aspects separately. In this article, all of the above aspects have been combined
to develop a general framework for predicting the number of faults in OSS. The comparison of eight
models on the basis of their prediction capability on two well-known Open Source Software datasets is
created and then ranked using normalized criteria distance approach.

Fault Prediction Modelling
in Open Source Software

Under Imperfect Debugging
and Change-Point

Shozab Khurshid
University of Kashmir, Srinagar, India

A. K. Shrivastava
Fortune Institute of International Business, New Delhi, India

Javaid Iqbal
University of Kashmir, Srinagar, India

278

Fault Prediction Modelling in Open Source Software Under Imperfect Debugging and Change-Point
﻿

1. INTRODUCTION

Software is considered as an essential component as its need is felt in every walk of life. In modern era,
there is a rapid expansion in the use of software and thus the software engineers strive hard in producing
error free and quality software for customer satisfaction. Software development can be done in one of
the two ways i.e. either in-house (Closed Source Software) or Open Source Software (OSS). OSS differs
significantly from the closed source software in terms of its designing and development. Open Source
Software can be defined as the software in which user can approach the source code and modify it over
the internet. This helps different users sitting at different locations to interact and develop the software
at any time. This also enhances the speed of software development according to the need. On the other
hand, the source code of CSS is inaccessible to its users, with the result, the users can run the software but
lack the opportunity of modifying the code (Najeeb ullah et al., 2012). The increasing demands of tech
savvy users in no time has forced IT firms and software developers to collaborate so that requirements
can be fulfilled on time. The reason that OSS is satisfying the desires and interests of users incisively is
that it follows the methodology of parallel development and debugging.

The concept of OSS in which sharing of ideas and source code was believed to be the fundamental
principle was given by Richard Stallman, a software developer from America in the 1970’s. The key
characteristics of OSS are that the source code must be included in the software distribution of Open
Source Software and the user must be able to reproduce or modify the software. The step wise release
cycle of open source is as:

1. 	 Open Source Software is released on Internet
2. 	 Users implement the OSS
3. 	 Users report the bugs in software
4. 	 These reports are sent for verification and validation
5. 	 Accordingly, the source code is modified and same is uploaded by the developer
6. 	 Repeat Step 1

Since OSS is developed by massive volunteers throughout the world, there are some issues with it as
well. No documentation is present as there is no contractual responsibility for OSS, poor user-interface
design that makes it less significant to be used, and lastly, thousands of contributors participate in OSS
testing and put forth their bug reports which can enhance the software reliability many times but still
there are some loopholes in its security.

As OSS is free with respect to the licensing, and is being updated constantly by various developers,
measuring its quality in terms of reliability becomes a prime requisite. The failure pattern of OSS is
different from that of CSS and as such their reliability grows in a slightly different manner. The reason
behind this is the frequent change in the OSS source code. In the current study, we will study the reliability
growth of Open Source Software projects and propose a unified framework of software reliability growth
model catering different needs with respect to the diverse testing and debugging environment (T&D).

Notations
Λ(t): Cumulative number of faults detected or removed by time t
ω(t): Time dependent initial fault content of software.
I: Probability of perfect debugging.

15 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/fault-prediction-modelling-in-open-source-

software-under-imperfect-debugging-and-change-point/261031

Related Content

Software-Defined Storage
Himanshu Sahuand Ninni Singh (2018). Innovations in Software-Defined Networking and Network

Functions Virtualization (pp. 268-290).

www.irma-international.org/chapter/software-defined-storage/198203

A Survey on Energy-Efficient Routing in Wireless Sensor Networks Using Machine Learning

Algorithms
Prasenjit Deyand Arnab Gain (2023). Novel Research and Development Approaches in Heterogeneous

Systems and Algorithms (pp. 272-291).

www.irma-international.org/chapter/a-survey-on-energy-efficient-routing-in-wireless-sensor-networks-using-machine-

learning-algorithms/320135

Architecture and Implementation Issues
Ajantha Dahanayake (2001). Computer-Aided Method Engineering: Designing CASE Repositories for the

21st Century (pp. 95-137).

www.irma-international.org/chapter/architecture-implementation-issues/6876

Selection Process for Free Open Source Software
David William Schuster (2021). Research Anthology on Recent Trends, Tools, and Implications of

Computer Programming (pp. 1013-1025).

www.irma-international.org/chapter/selection-process-for-free-open-source-software/261066

Impact Assessment of Policies and Practices for Agile Software Process Improvement: An

Approach Using Dynamic Simulation Systems and Six Sigma
George Leal Jamiland Rodrigo Almeida de Oliveira (2021). Research Anthology on Recent Trends, Tools,

and Implications of Computer Programming (pp. 1616-1641).

www.irma-international.org/chapter/impact-assessment-of-policies-and-practices-for-agile-software-process-

improvement/261093

http://www.igi-global.com/chapter/fault-prediction-modelling-in-open-source-software-under-imperfect-debugging-and-change-point/261031
http://www.igi-global.com/chapter/fault-prediction-modelling-in-open-source-software-under-imperfect-debugging-and-change-point/261031
http://www.irma-international.org/chapter/software-defined-storage/198203
http://www.irma-international.org/chapter/a-survey-on-energy-efficient-routing-in-wireless-sensor-networks-using-machine-learning-algorithms/320135
http://www.irma-international.org/chapter/a-survey-on-energy-efficient-routing-in-wireless-sensor-networks-using-machine-learning-algorithms/320135
http://www.irma-international.org/chapter/architecture-implementation-issues/6876
http://www.irma-international.org/chapter/selection-process-for-free-open-source-software/261066
http://www.irma-international.org/chapter/impact-assessment-of-policies-and-practices-for-agile-software-process-improvement/261093
http://www.irma-international.org/chapter/impact-assessment-of-policies-and-practices-for-agile-software-process-improvement/261093

