Chapter 11

A Telecommunications Model for Managing Complexity of Voice and Data Networks and Services

Bahador Ghahramani
University of Nebraska at Omaha, USA

ABSTRACT

The telecommunications industry (TI) is challenged by a significant increase in the complexity of information transfer due to a recent proliferation of data mining technologies, techniques and applications. As the result, TI is facing a fundamental paradigm shift, with the convergence of voice and data services as well as ever expanding technologies to its users. This technological movement towards a convergence of telephony and computer technologies, web-based networks, and wired and wireless services is creating areas of tremendous opportunities. These areas of opportunity are for continuous quality improvements and applications of the voice and data convergence mining techniques and their implementations. The TI’s implementation of the data mining algorithms reduces information overload, increases data integrity and accuracy, and effectively manages its global networks.

INTRODUCTION

The systems design and development (SDD) are now facing a challenge regarding how to integrate more modern packet-based systems with other
outdated networks in existence. Modern telecommunications industry (TI) service providers are demanding consolidation of their capabilities under one global network or as part of a packet-based system. This integration improves users’ product and service applications and their programmability across the networks. The proposed converged model (CM) has improved network service integration by implementing modern data mining technologies, information filtering, and deploying packet-based voice and data systems independent of more outdated circuit-based voice telephony (Chatzipapadopoulos & Perdikeas, 2000; Guston, 2000).

Figure 1: Model’s architecture integration in a TI environment

API—Application programming interface
ATM—Asynchronous transfer mode
DLC—Digital loop carrier
OSS—Operations support system
SS7—Signaling system
XDSL—Any of various digital subscriber lines, xDSL, modems, trunks, DSL, cable, wireless
IP—Internet protocol
ATM—Asynchronous transfer mode
DLC—Digital loop carrier
OSS—Operations support system
SS7—Signaling system
XDSL—Any of various digital subscriber lines, xDSL, modems, trunks, DSL, cable, wireless
IP—Internet protocol
Related Content

Spatial Data Mining for Highlighting Hotspots in Personal Navigation Routes
www.irma-international.org/article/spatial-data-mining-highlighting-hotspots/67573/

Feature Based Opinion Mining
www.irma-international.org/chapter/feature-based-opinion-mining/211550/

Empirical Investigation of Decision Tree Ensembles for Monitoring Cardiac Complications of Diabetes

The Evolution from Electric Grid to Smart Grid
Jesus Fraile-Ardanuy, Dionisio Ramirez, Sergio Martinez, Jairo Gonzalez and Roberto Alvaro (2014). *Data Science and Simulation in Transportation Research* (pp. 259-281).
www.irma-international.org/chapter/the-evolution-from-electric-grid-to-smart-grid/90075/

A Classification Framework on Opinion Mining for Effective Recommendation Systems
www.irma-international.org/chapter/a-classification-framework-on-opinion-mining-for-effective-recommendation-systems/159503/