Chapter X

Learning Objects for Employee Training and Competency Development

Anne-Marie Armstrong, Wayne State University, USA

Abstract

Learning objects are being used more and more by the corporate training world. Their acceptance by corporate training can be attributed in part to the fact that they provided those departments with a system and tools that they could present to their decision makers—a system that aligned with corporate goals. Some of those goals included the need to train a global workforce and the need to do it in an effective, competitive, and efficient manner. The examples provided demonstrate how and why learning object systems have found success in different corporations. First content was chosen that could be developed, parsed, stored, and retrieved. The content was both reusable and migratory. Next robust systems that allow the various learning audiences to access the content and use it for various purposes were built. And finally, the benefits to the various stakeholders were successfully marketed and accepted.
Introduction

The corporate training world has for the most part embraced the concept of learning objects in one form or another. This was partly the result of the fact that the government and the military led the way and established standards and duplicable processes. But also because corporate training managers found that the inclusion of a database driven system of reusable learning objects either as a learning management system (LMS) or as a learning content management system (LCMS) was an easy sell to their upper management. The LMS and LCMS were readily accepted because the proponents were able to verify its cost-cutting potential and to tie it to the corporations’ business goals. In this chapter, two case studies of the use of learning objects by training management in the corporate world are presented. The first study describes how employees and supervisors use a LMS that is tied to individual development plans to identify and verify self-paced competency development. The second study describes a LCMS that allows courses to be built, searched, modified, and repurposed with a minimum of redesign and redevelopment. However in order to understand the context within which these systems operate there is a discussion of learning objects, learning, training, and business goals.

The single laudable goal of learning objects is the use of modern information technology to make the ideas in information and learning programs accessible, useful and reusable. Think of it. What if all ideas, facts and knowledge was coded and classified in such a way that you could simply specify a few parameters, such as your current level of knowledge and your future goal, then press a button, and out of a database comes a fully formed learning sequence that guides your learning from its present state are to where you want it to be. It would be cheap too, because of the economies of scale and efficiency coming from the intelligence applied to reusing parts and pieces over and over again. It would be a philosopher’s stone, created from intelligence and silicon dioxide and it is here now at least it is here for the purposes of corporate training (deSousa, in press).

Training that is deployed to tens of thousands of employees across the globe with millions of dollars of impact at stake has been implemented. And a system that captures, slices, dices, and codifies a complex corporation’s knowledge exists. The problem of integrating the system into the culture of the corporation is being addressed and progress has been made.

The hope and promise of training curricula spun out of a database on the fly has been hindered by at least two significant constraints. First is the complexity of both the technology infrastructure and the classification system that permits the information to be chunked and stored in a database. This was not so much a problem as it was a fight for resources both technological and monetary within corporations. It was a fight that was won by presenting a business case that justified its expense.
Related Content

An Exploration of Students’ Participation, Learning Process, and Learning Outcomes in Web 2.0 Computer Supported Collaborative Learning
[www.irma-international.org/article/exploration-students-participation-learning-process/53550/](www.irma-international.org/article/exploration-students-participation-learning-process/53550/)

Connecting Pedagogy, Preparation, and Passion: An Engaging Approach to Preparing Leadership and Advocacy Skills in Pre-Service Teacher Education
[www.irma-international.org/chapter/connecting-pedagogy-preparation-and-passion/190369/](www.irma-international.org/chapter/connecting-pedagogy-preparation-and-passion/190369/)

Interpreting Experiences of Students Using Educational Online Technologies to Interact with Students in Blended Tertiary Environments: A Phenomenological Study
[www.irma-international.org/article/interpreting-experiences-of-students-using-educational-online-technologies-to-interact-with-students-in-blended-tertiary-environments/162682/](www.irma-international.org/article/interpreting-experiences-of-students-using-educational-online-technologies-to-interact-with-students-in-blended-tertiary-environments/162682/)

Industrial Technology Pedagogy: Need for Human Relations Skills
[www.irma-international.org/chapter/industrial-technology-pedagogy/16737/](www.irma-international.org/chapter/industrial-technology-pedagogy/16737/)

The Applied Roles of Graphics in E-Learning
[www.irma-international.org/chapter/applied-roles-graphics-learning/39622/](www.irma-international.org/chapter/applied-roles-graphics-learning/39622/)