A Conceptual Descriptive-Comparative Study of Models and Standards of Processes in SE, SwE, and IT Disciplines Using the Theory of Systems

Manuel Mora, Autonomous University of Aguascalientes, México
Ovsei Gelman, Universidad Nacional Autónoma de Mexico, Mexico
Rory O’Connor, Dublin City University, Ireland
Francisco Alvarez, Autonomous University of Aguascalientes, Mexico
Jorge Macias-Llèveano, Autonomous University of Aguascalientes, Mexico

ABSTRACT

The increasing design, manufacturing, and provision complexity of high-quality, cost-efficient and trustworthy products and services has demanded the exchange of best organizational practices in worldwide organizations. While that such a realization has been available to organizations via models and standards of processes, the myriad of them and their heavy conceptual density has obscured their comprehension and practitioners are confused in their correct organizational selection, evaluation, and deployment tasks. Thus, with the ultimate aim to improve the task understanding of such schemes by reducing its business process understanding complexity, in this article we use a conceptual systemic model of a generic business organization derived from the theory of systems to describe and compare two main models (CMMI/SE/SwE, 2002; ITIL V3, 2007) and four main standards (ISO/IEC 15288, 2002; ISO/IEC 12207, 1995; ISO/IEC 15504, 2005; ISO/IEC 20000, 2006) of processes. Description and comparison are realized through a mapping of them onto the systemic model.

Keywords: ISO; information technology; software engineering; standards and models of process; systems engineering; theory of systems

INTRODUCTION

Competitive market pressures in worldwide business firms, because of an accelerated scientific, technological, and human-development progress1 (Bar-Yam et al., 2004) have fostered the consumer’ demands for better and cheaper products and services (e.g., designed with more functional capabilities and offered in more mar-
ket competitive prices). Consequently, in order to design and manufacture, as well as provision and operate competitive high-quality technical, cost-efficient and trustworthy products and services, worldwide business firms are faced with the intra and inter organizational need to integrate multiple engineering and managerial systems and business processes (Sage & Cupan, 2001).

Such a demanded intra and inter business process integration, in turn, has introduced an engineering and managerial business process performance complexity in organizations (but experimented by technical and business managers), and an engineering and managerial business process understanding complexity in practitioners (experimented by technical and business managers as well as business process consultants). A business process performance complexity in this context is defined as the structural and/or dynamic system’s complexity (Sterman, 1999) that confronts technical and business managers to achieve the system organizational performance goals (e.g., efficiency, efficacy, and effectiveness organizational metrics). In similar mode, a business process understanding complexity is defined as the structural and/or dynamic system’s complexity that confronts technical and business managers (and business consultants) to acquire a holistic view of such a system under a learning focus.

Manifestations of such raising business process performance and business process understanding complexities are: (i) critical failures (by cancellations, interruptions, partial use, or early disposal) of enterprises information systems implementations (Standish Group, 2003; CIO UK, 2007); (ii) the apparition (and necessary retirement in the market) of defective products¹ (as tires, toys, software); and (iii) system downtimes and/or low efficiency and effectiveness in critical services such as electricity, nuclear plants, health services, and governmental services (Bar-Yam, 2003).

Consequently, some researchers have proposed the notion of complex system of systems (SoS) (Manthorpe, 1996; Carlock & Fenton, 2001; Sage & Cuppan, 2001) and others have helped to organize such a novel construct (Keating et al., 2003; Bar-Yam et al., 2004), as a conceptual tool to cope with that we call a business process performance complexity and a business process understanding complexity. Worldwide business firms, then, can be considered SoS and, as such, are comprised of a large variety of self-purposeful internal and external system components and forward and backward system interactions that generate unexpected emergent behaviors in multiple scales. Also, as SoS, the design/engineering and manufacturing/provision complexity of products/services is manifested by the variety of processes, machines/tools, materials, and system-component designs, as well as for the high-quality, cost-efficiency relationships, and value expectations demanded from the competitive worldwide markets. In turn, managerial process complexity is manifested by the disparate business internal and external process to be coordinated to meet the time to market, competitive prices, market-sharing, distribution scope and environmental and ethical organizational objectives, between other financial and strategic organizational objectives to meet (Farr & Buede, 2003).

Furthermore, other authors have introduced the notion of complex software-intensive systems (Boehm & Lane, 2006) and complex IT-based organizational systems (Mora et al., 2008) which are characterized by having: “(i) many heterogeneous ICT (client and server hardware, operating systems, middleware, network and telecommunication equipment, and business systems applications), (ii) a large variety of specialized human resources for their engineering, management and operation, (iii) a worldwide scope, (iv) geographically distributed operational and managerial users, (v) core business processes supported, (vi) a huge financial budget for organizational deployment, and (vii) a critical interdependence on ICT.” And, because such CITOS are critical-mission systems for large-scale organizations and, according to Gartner’s consultants Hunter and Blosch (2003, quoted in Mora et al., 2008), these CITOS “no longer merely depend on information systems ... [but] the systems are

¹Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Related Content

Knowledge Management and Quality Control in Software Outsourcing Projects

Implications for Improving Accessibility to E-Commerce Websites in Developing Countries: A Study of Hotel Websites
[www.irma-international.org/article/implications-improving-accessibility-commerce-websites/65088/](www.irma-international.org/article/implications-improving-accessibility-commerce-websites/65088/)

Network Security through Wireless Location Systems
André Peres and Raul Fernando Weber (2011). *Teaching Cases Collection* (pp. 234-251).
[www.irma-international.org/chapter/network-security-through-wireless-location/49224/](www.irma-international.org/chapter/network-security-through-wireless-location/49224/)

Critical Success Factors of ERP Implementation
[www.irma-international.org/chapter/critical-success-factors-erp-implementation/25134/](www.irma-international.org/chapter/critical-success-factors-erp-implementation/25134/)

The Systems Approach View from Professor Andrew P. Sage: An Interview
[www.irma-international.org/article/systems-approach-view-professor-andrew/2540/](www.irma-international.org/article/systems-approach-view-professor-andrew/2540/)