
740

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 39

DOI: 10.4018/978-1-7998-2460-2.ch039

ABSTRACT

Logging is an important yet tough decision for OSS developers. Machine-learning models are useful in
improving several steps of OSS development, including logging. Several recent studies propose machine-
learning models to predict logged code construct. The prediction performances of these models are limited
due to the class-imbalance problem since the number of logged code constructs is small as compared
to non-logged code constructs. No previous study analyzes the class-imbalance problem for logged
code construct prediction. The authors first analyze the performances of J48, RF, and SVM classifiers
for catch-blocks and if-blocks logged code constructs prediction on imbalanced datasets. Second, the
authors propose LogIm, an ensemble and threshold-based machine-learning model. Third, the authors
evaluate the performance of LogIm on three open-source projects. On average, LogIm model improves
the performance of baseline classifiers, J48, RF, and SVM, by 7.38%, 9.24%, and 4.6% for catch-blocks,
and 12.11%, 14.95%, and 19.13% for if-blocks logging prediction.

Improving Logging Prediction
on Imbalanced Datasets:

A Case Study on Open Source Java Projects

Sangeeta Lal
Jaypee Institute of Information Technology Noida, Department of CSE & IT, Noida, Uttar-Pradesh,

India

Neetu Sardana
Jaypee Institute of Information Technology Noida, Department of CSE & IT, Noida, Uttar-Pradesh,

India

Ashish Sureka
ABB Corporate Research Center, Bangalore, India

741

Improving Logging Prediction on Imbalanced Datasets

INTRODUCTION

Debugging plays an essential role in the development of any Open Source Software (OSS), as the speed
of debugging can be of vital importance in adopting any OSS. Logging, an important software develop-
ment practice, is crucial for debugging in the production setting, and can play a major role in the suc-
cess of any OSS. Logging is used to record execution information about the program. The recorded log
assists the software developers in fixing bugs. An empirical study performed by Yuan et al. (2012a) on
OSS showed that bug reports consisting of log statements are fixed 2.2 times faster than the bug report
without log statements. Stack traces produced at the time of program failure are also useful in fixing the
bug, but they only provide information about the exact point where the failure occurs, and do not give
any information about the state just before the failure (StackExchange, n. d.). In contrast, log statements
provide history about the failed event which is useful in debugging. In addition to debugging, logging
is useful in several other software development activities, such as remote issue resolution (BlackBerry
Enterprise Server Logs Submission, 2015), performance problem diagnosis (Nagaraj, Killian, & Neville,
2012), workload modeling (Sharma, Chudnovsky, Hellerstein, Rifaat, & Das, 2011), and load testing
(Jiang, Hassan, Hamann, & Flora, 2008, 2009). The importance of logging can be considered from the
fact that log statements are pervasive in OSS as various OSS are heavily logged. For example, the widely
used OpenSSH project consist of 3407 log statements (Yuan et al. (2012b)). The Tomcat, CloudStack,
and Hadoop project consists of thousands of log statements (refer to Table 10 in the Appendix).

Log statements are useful, but they have a cost-benefit tradeoff. Excess log statements in source code
can generate too many trivial logs, making debugging more challenging by hiding important debugging
information. Excess log statements can also increase performance (I/O intensive activity) and cost (de-
velopment and maintenance) overhead. Excessive logging is one reason for poor performance in several
OSS, such as Tomcat, Jetty, JBoss (Granber, 2016a; Grabner, 2016b). Like excessive logging, sparse
logging is also problematic. It can omit important debugging information and decrease the benefits of
logging. Hence, it is important to optimize the number of log statements in the source code.

Optimizing log statements in the source code, or identifying code constructs that must be logged, is
a nontrivial and technically challenging task. It happens because software developers and code contribu-
tors in OSS often are not provided with any formal guidelines about software logging. Hence, logging
is often based on domain knowledge and experience of the software developers. Also, logging practices
can differ from project to project, depending on the application need. This problem can be exaggerated
in OSS because contributions to OSS are often voluntary. These systems may lack documentation (Lev-
ensque, 2005) or appropriate coding standards ((Fitzgerald, 2004). All the knowledge and experience
is in the mind of the experienced software developer. In addition, finding mentors in OSS is also very
challenging (Steinmacher et al. (2013). As a result, source code logging can be challenging for new OSS
developers who lack experience and domain knowledge. Previous studies show that software developers
face difficulties in identifying source code constructs that need to be logged or in optimal source code
logging (Fu, et al., 2014; Zhu et al., 2015). Hence, tools and techniques to help software developers
make informed logging decisions in the source code could be beneficial.

Several recent studies propose machine-learning-based models to predict log statements in source
code help software developers in identifying the source code constructs that must be logged (Fu et al.,
2014; Lal & Sureka, 2016; Lal, Sardana, & Sureka, 2016; Saini, Sardana, & Lal, 2016; Zhu et al., 2015).
These techniques use static features from the source code to train the machine-learning-based model
used to predict logged and nonlogged source code constructs. However, a major challenge in machine-

31 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/improving-logging-prediction-on-imbalanced-

datasets/252055

Related Content

Diagnosis Rule Extraction from Patient Data for Chronic Kidney Disease Using Machine

Learning
Alexander Arman Serpen (2020). Cognitive Analytics: Concepts, Methodologies, Tools, and Applications

(pp. 1165-1174).

www.irma-international.org/chapter/diagnosis-rule-extraction-from-patient-data-for-chronic-kidney-disease-using-

machine-learning/252076

Advancing Malware Classification With an Evolving Clustering Method
Chia-Mei Chenand Shi-Hao Wang (2020). Cognitive Analytics: Concepts, Methodologies, Tools, and

Applications (pp. 1882-1894).

www.irma-international.org/chapter/advancing-malware-classification-with-an-evolving-clustering-method/252116

Methods and Processes for District-Wide Literacy Evaluation
Salika A. Lawrenceand Minkie O. English (2020). Cognitive Analytics: Concepts, Methodologies, Tools, and

Applications (pp. 443-468).

www.irma-international.org/chapter/methods-and-processes-for-district-wide-literacy-evaluation/252038

Quantitative Semantic Analysis and Comprehension by Cognitive Machine Learning
Yingxu Wang, Mehrdad Valipourand Omar A. Zatarain (2020). Cognitive Analytics: Concepts,

Methodologies, Tools, and Applications (pp. 673-688).

www.irma-international.org/chapter/quantitative-semantic-analysis-and-comprehension-by-cognitive-machine-

learning/252051

Malicious Application Detection and Classification System for Android Mobiles
Sapna Malikand Kiran Khatter (2020). Cognitive Analytics: Concepts, Methodologies, Tools, and

Applications (pp. 122-142).

www.irma-international.org/chapter/malicious-application-detection-and-classification-system-for-android-

mobiles/252023

http://www.igi-global.com/chapter/improving-logging-prediction-on-imbalanced-datasets/252055
http://www.igi-global.com/chapter/improving-logging-prediction-on-imbalanced-datasets/252055
http://www.irma-international.org/chapter/diagnosis-rule-extraction-from-patient-data-for-chronic-kidney-disease-using-machine-learning/252076
http://www.irma-international.org/chapter/diagnosis-rule-extraction-from-patient-data-for-chronic-kidney-disease-using-machine-learning/252076
http://www.irma-international.org/chapter/advancing-malware-classification-with-an-evolving-clustering-method/252116
http://www.irma-international.org/chapter/methods-and-processes-for-district-wide-literacy-evaluation/252038
http://www.irma-international.org/chapter/quantitative-semantic-analysis-and-comprehension-by-cognitive-machine-learning/252051
http://www.irma-international.org/chapter/quantitative-semantic-analysis-and-comprehension-by-cognitive-machine-learning/252051
http://www.irma-international.org/chapter/malicious-application-detection-and-classification-system-for-android-mobiles/252023
http://www.irma-international.org/chapter/malicious-application-detection-and-classification-system-for-android-mobiles/252023

