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ABSTRACT

Logging is an important yet tough decision for OSS developers. Machine-learning models are useful in 
improving several steps of OSS development, including logging. Several recent studies propose machine-
learning models to predict logged code construct. The prediction performances of these models are limited 
due to the class-imbalance problem since the number of logged code constructs is small as compared 
to non-logged code constructs. No previous study analyzes the class-imbalance problem for logged 
code construct prediction. The authors first analyze the performances of J48, RF, and SVM classifiers 
for catch-blocks and if-blocks logged code constructs prediction on imbalanced datasets. Second, the 
authors propose LogIm, an ensemble and threshold-based machine-learning model. Third, the authors 
evaluate the performance of LogIm on three open-source projects. On average, LogIm model improves 
the performance of baseline classifiers, J48, RF, and SVM, by 7.38%, 9.24%, and 4.6% for catch-blocks, 
and 12.11%, 14.95%, and 19.13% for if-blocks logging prediction.
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INTRODUCTION

Debugging plays an essential role in the development of any Open Source Software (OSS), as the speed 
of debugging can be of vital importance in adopting any OSS. Logging, an important software develop-
ment practice, is crucial for debugging in the production setting, and can play a major role in the suc-
cess of any OSS. Logging is used to record execution information about the program. The recorded log 
assists the software developers in fixing bugs. An empirical study performed by Yuan et al. (2012a) on 
OSS showed that bug reports consisting of log statements are fixed 2.2 times faster than the bug report 
without log statements. Stack traces produced at the time of program failure are also useful in fixing the 
bug, but they only provide information about the exact point where the failure occurs, and do not give 
any information about the state just before the failure (StackExchange, n. d.). In contrast, log statements 
provide history about the failed event which is useful in debugging. In addition to debugging, logging 
is useful in several other software development activities, such as remote issue resolution (BlackBerry 
Enterprise Server Logs Submission, 2015), performance problem diagnosis (Nagaraj, Killian, & Neville, 
2012), workload modeling (Sharma, Chudnovsky, Hellerstein, Rifaat, & Das, 2011), and load testing 
(Jiang, Hassan, Hamann, & Flora, 2008, 2009). The importance of logging can be considered from the 
fact that log statements are pervasive in OSS as various OSS are heavily logged. For example, the widely 
used OpenSSH project consist of 3407 log statements (Yuan et al. (2012b)). The Tomcat, CloudStack, 
and Hadoop project consists of thousands of log statements (refer to Table 10 in the Appendix).

Log statements are useful, but they have a cost-benefit tradeoff. Excess log statements in source code 
can generate too many trivial logs, making debugging more challenging by hiding important debugging 
information. Excess log statements can also increase performance (I/O intensive activity) and cost (de-
velopment and maintenance) overhead. Excessive logging is one reason for poor performance in several 
OSS, such as Tomcat, Jetty, JBoss (Granber, 2016a; Grabner, 2016b). Like excessive logging, sparse 
logging is also problematic. It can omit important debugging information and decrease the benefits of 
logging. Hence, it is important to optimize the number of log statements in the source code.

Optimizing log statements in the source code, or identifying code constructs that must be logged, is 
a nontrivial and technically challenging task. It happens because software developers and code contribu-
tors in OSS often are not provided with any formal guidelines about software logging. Hence, logging 
is often based on domain knowledge and experience of the software developers. Also, logging practices 
can differ from project to project, depending on the application need. This problem can be exaggerated 
in OSS because contributions to OSS are often voluntary. These systems may lack documentation (Lev-
ensque, 2005) or appropriate coding standards ((Fitzgerald, 2004). All the knowledge and experience 
is in the mind of the experienced software developer. In addition, finding mentors in OSS is also very 
challenging (Steinmacher et al. (2013). As a result, source code logging can be challenging for new OSS 
developers who lack experience and domain knowledge. Previous studies show that software developers 
face difficulties in identifying source code constructs that need to be logged or in optimal source code 
logging (Fu, et al., 2014; Zhu et al., 2015). Hence, tools and techniques to help software developers 
make informed logging decisions in the source code could be beneficial.

Several recent studies propose machine-learning-based models to predict log statements in source 
code help software developers in identifying the source code constructs that must be logged (Fu et al., 
2014; Lal & Sureka, 2016; Lal, Sardana, & Sureka, 2016; Saini, Sardana, & Lal, 2016; Zhu et al., 2015). 
These techniques use static features from the source code to train the machine-learning-based model 
used to predict logged and nonlogged source code constructs. However, a major challenge in machine-
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