
DOI: 10.4018/IJSI.2020040102

International Journal of Software Innovation
Volume 8 • Issue 2 • April-June 2020

﻿
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

23

Building Ant System for Multi-
Faceted Test Case Prioritization:
An Empirical Study
Manoj Kumar Pachariya, MCNUJC, Bhopal, Madhya Pradesh, India

ABSTRACT

This article presents the empirical study of multi-criteria test case prioritization. In this article, a test
case prioritization problem with time constraints is being solved by using the ant colony optimization
(ACO) approach. The ACO is a meta-heuristic and nature-inspired approach that has been applied
for the statement of a coverage-based test case prioritization problem. The proposed approach ranks
test cases using statement coverage as a fitness criteria and the execution time as a constraint. The
proposed approach is implemented in MatLab and validated on widely used benchmark dataset, freely
available on the Software Infrastructure Repository (SIR). The results of experimental study show that
the proposed ACO based approach provides near optimal solution to test case prioritization problem.

Keywords
Execution Time, Multi-Criteria Test Case Prioritization, Nature Inspired Technique, Statement Coverage,
Test Suite

1. INTRODUCTION

Software testing is an investigation conducted to provide stakeholders with information about the
quality of the product or service under test. Software testing demonstrates the business view and
helps in identifying the risks generated during software development (Kumar et al., 2013; Kumar et
al., 2014). The prominent objectives of software testing are to meet the requirements that guided its
design and development, work as expected by client, and satisfy the needs of stakeholders. Testing is
done to ensure code and data flow coverageability of the program. The code coverageability includes
the statement, branch, loop, and path coverageability. Testing team has to ensure that all program
elements are executed at least once (Kumar et al., 2014; Epitropakis et al., 2015; Li et al., 2007).

In regression testing, execution of the selected test cases on SUT (Software Under Test) enhances
the confidence, reliability and quality of software product (Li et al., 2007). The regression testing
process is concerned to maintenance phase. In regression testing, there is a need of rerunning the
already executed test suite on software under test (SUT) after modification carried out in original
software. In regression testing, test case prioritization is required to expose the faults in SUT at the
early hours. Re-executing the complete test suite is not practical and not cost effective. Software
industry requires cost effective approach for testing the software product adequately due to lacking

International Journal of Software Innovation
Volume 8 • Issue 2 • April-June 2020

24

time and resource constraint. The test case prioritization approaches will meet the requirement of
software industry (Islam et al., 2012; Sun et al., 2013).

For testing a program, a test case is an input value for determining the failure and pass of
program. It is used to ensure the validation of product and verification of process. The test case
optimization is process of identifying the minimal cardinality subset of test cases from the large pool
of test cases. The test case optimization is commonly concern with test case minimization, selection,
prioritization, filtration and classification. The test case optimization reduces the efforts; duration
and cost of testing as it provides optimal subset of test cases for audit (Kumar et al., 2011a; Kumar
et al., 2011b; Kumar et al., 2011c).

Test case minimization is the process of identifying and removing the redundant test cases from
large pool according to the objectives of testing. This subset of test cases is used to audit the program.
This subset attains the same value of objective as the entire pool does. The identification of minimal
cardinality subset of test cases from the large pool of test case is called the test case selection. The
test case minimization reduces the set permanently by removing redundant and obsolete test case in
the set while test case selection temporarily chooses optimal or the best fit test cases from the large
pool according the test fitness criterion (Kumar et al., 2012; Kumar 2015).

For attaining the optimal value of testing objectives as early as possible, the ranking/ ordering/
scheduling of test cases is known as test case prioritization. Test case filtration is to chunk out subset
of closely related test cases to optimize the objectives of testing (Tyagi & Malhotra, 2014). Test case
prioritization is a critical problem of software testing. Since several factors may be considered in
order to find the best order for test cases, several search-based techniques have been applied to find
solutions for test case prioritization problem (Li et al., 2007; He & Bai, 2015).

Genetic algorithms are used to reorder test cases in a test suite using execution time as a constraint
had shown that prioritization technique is appropriate for manual regression testing environment and
explains how the baseline approach can be extended to operate in additional time constrained testing
circumstances. Most of the researchers had explored genetic algorithm, ant colony optimization,
linear programming etc. based approaches to find out the subset of test cases from a large pool of
test cases but multi-faceted test case prioritization has not been explored and evaluated thoroughly
(Sabharwal et al., 2011).

Literature study is the evidence that most of the researchers have explored and applied the greedy
algorithms for test case prioritization. These algorithms provide the suboptimal solutions by identifying
the local optimal solution in search space. For identification of the global optimal solution of test case
optimization problem, nature inspired, and evolutionary algorithms are most suitable and helpful (Li
et al., 2007; Kumar et al., 2011; Walcott et al., 2006). Some of these works apply ant colony-based
algorithm, but the Statement Coverage along with time constraint was not considered. On the basis of
fault detecting capability many interesting results have been received but the test case prioritization
based on statement coverage with time constraint using Ant Colony Optimization technique has not
been explored. So, there is still space for the researchers to experiment and validate the ant colony
optimization-based approach to find out the order of test cases on the basis of statement coverageability
(Singh et al., 2010; Suri & Singhal 2011). In this study, multi-objective test case prioritization is
explored by applying Ant Colony Optimization approach to meet industry demand.

Ant colony optimization (ACO) is nature-inspired and search space driven approach. It is best
suitable for finding solutions of Combinatorial Optimization Problems (COP’s). It also provides
optimal solutions of several NP hard problems. Several real-life problems such as vehicle routing,
quadratic assignment, scheduling, sequential ordering, routing in internet and other combinatorial
problems are solved efficiently by employing artificial ants’ systems (Dorigo et al., 1996; Colorni et
al., 1991; Dorigo & Socha 2007).

In this article, ACO, a meta-heuristic and nature inspired approach has been applied for statement
coverage-based test case prioritization problem. The proposed approach ranks test cases using
statement coverage as fitness criteria and execution time as constraint. In this study, multi-objective

13 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/building-ant-system-for-multi-faceted-test-

case-prioritization/248528

Related Content

Quality, Improvement and Measurements in High Risk Software
Edgardo Palza Vargas (2014). Software Design and Development: Concepts,

Methodologies, Tools, and Applications (pp. 733-748).

www.irma-international.org/chapter/quality-improvement-measurements-high-risk/77730

SLIM: Service Location and Invocation Middleware for Mobile Wireless

Sensor and Actuator Networks
Gianpaolo Cugolaand Alessandro Margara (2012). Theoretical and Analytical

Service-Focused Systems Design and Development (pp. 346-361).

www.irma-international.org/chapter/slim-service-location-invocation-middleware/66807

Modelling Business Rules Using Defeasible Logic
G. Antoniouand M. Arief (2002). Optimal Information Modeling Techniques (pp. 128-

136).

www.irma-international.org/chapter/modelling-business-rules-using-defeasible/27831

Network Traffic Analysis Using Machine Learning Techniques in IoT

Networks
Shailendra Mishra (2021). International Journal of Software Innovation (pp. 107-123).

www.irma-international.org/article/network-traffic-analysis-using-machine-learning-techniques-in-

iot-networks/289172

Security Gaps in Databases: A Comparison of Alternative Software Products

for Web Applications Support
Afonso Araújo Netoand Marco Vieira (2011). International Journal of Secure Software

Engineering (pp. 42-62).

www.irma-international.org/article/security-gaps-databases/58507

http://www.igi-global.com/article/building-ant-system-for-multi-faceted-test-case-prioritization/248528
http://www.igi-global.com/article/building-ant-system-for-multi-faceted-test-case-prioritization/248528
http://www.igi-global.com/article/building-ant-system-for-multi-faceted-test-case-prioritization/248528
http://www.irma-international.org/chapter/quality-improvement-measurements-high-risk/77730
http://www.irma-international.org/chapter/slim-service-location-invocation-middleware/66807
http://www.irma-international.org/chapter/modelling-business-rules-using-defeasible/27831
http://www.irma-international.org/article/network-traffic-analysis-using-machine-learning-techniques-in-iot-networks/289172
http://www.irma-international.org/article/network-traffic-analysis-using-machine-learning-techniques-in-iot-networks/289172
http://www.irma-international.org/article/security-gaps-databases/58507

