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ABSTRACT

Bayesian networks are useful analytical models for designing the structure of knowledge in machine 
learning. Bayesian networks can represent probabilistic dependency relationships among the variables. 
One strategy of Bayesian Networks structure learning is the score and search technique. The authors 
present the Elephant Swarm Water Search Algorithm (ESWSA) as a novel approach to Bayesian 
network structure learning. In the algorithm; Deleting, Reversing, Inserting, and Moving are used to 
make the ESWSA for reaching the optimal structure solution. Mainly, water search strategy of elephants 
during drought periods is used in the ESWSA algorithm. The proposed method is compared with 
simulated annealing and greedy search using BDe score function. The authors have also investigated 
the confusion matrix performances of these techniques utilizing various benchmark data sets. As 
presented by the results of the evaluations, the proposed algorithm has better performance than the 
other algorithms and produces better scores and accuracy values.
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INTRODUCTION

Bayesian networks (BN) are one of the simplified analytical methods for constructing the probabilistic 
structure of knowledge in machine learning (Ji, Wei, & Liu, 2012). They can be implemented 
universally in knowledge design, argumentation, and inference (Fortier, Sheppard, & Pillai, 2013). 
The structure of the Bayesian network is a direct acyclic graph (DAG) which is formed concerning 
two significant parts; the parameters and the structure of the network. The parameters describe 
conditional probabilities, and the structure expresses dependencies among the variables. Solving 
the learning structure of the Bayesian network without a suitable search method is difficult. The 
challenges for learning the structure of Bayesian network (BN) from a dataset to achieve the optimal 
is NP-hard optimization problem (Li & Chen, 2014); however, extensive research has been conducted 
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to develop approximate strategies for learning network structure. Essentially, there are two procedures 
for Bayesian networks structural learning. The first is a constraint-based procedure while the second 
is score and search procedure (Margaritis, 2003). The score and search method is used to explore 
the space of BN structures and continuously evaluate all applicant network structures until the valid 
metric value achieved.

Score-based procedures rely on a function to evaluate the network, the available data, and they 
search for a structure that optimizes the score, which is the goal (Fast, 2010). The score function 
method is implemented using two primary criteria: Bayesian score and information-theoretic score. The 
information-theoretic score implemented in methods like; Log-likelihood (LL), Akaike information 
criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description Length (MDL), 
Normalized Minimum Likelihood (NML), and Mutual Information Tests (MIT). The Bayesian score 
implemented in some other methods like; BD (Bayesian Dirichlet), BDe (Bayesian Dirichlet (“e” 
for likelihood-equivalence)), BDeu (Bayesian Dirichlet equivalent uniform (“u” for uniform joint 
distribution)), and K2 (Cooper & Herskovits, 1992).

There are several methods of the search strategy for achieving the optimization of the structure 
learning problem. They include Particle Swarm Intelligence (Cowie, Oteniya, & Coles, 2007), Ant 
Colony Optimization Algorithm (Salama & Freitas, 2012), Bee Colony (Li & Chen, 2014), Hybrid 
Algorithm (He & Gao, 2018; Li & Wang, 2017; Kareem & Okur, 2018), Simulated Annealing 
Algorithm (Hesar, 2013), Bacterial Foraging Optimization (Yang, Ji, Liu, Liu, & Yin, 2016), Genetic 
Algorithms (Larraiiaga & Poza, 1996), Gene-Pool Optimal Mixing Evolutionary Algorithm (GOMEA) 
(Orphanou, Thierens, & Bosman, 2018), Breeding Swarm Algorithm (Khanteymoori, Olyaee, 
Abbaszadeh, & Valian, 2018), Binary Encoding Water Cycle (Wang & Liu, 2018), Pigeon Inspired 
Optimization (Kareem & Okur, 2019), Tightening Bounds (Fan, Yuan, & Malone, 2014), A* Search 
Algorithms (Yuan, Malonean, & Wu, 2011), Scatter Search Documents (Djan-Sampson & Sahin, 
2004), Cuckoo Optimization Algorithm (Askari & Ahsaee, 2018), Quasi-Determinism Screening 
(Rahier, Marie, Girard & Forbes, 2019), and Minimum Spanning Tree Algorithm (Sencer, Oztemel, 
Taskin, & Torkul, 2013). Another state-of-the-art metaheuristic method that can be used for structure 
learning in Bayesian networks is the elephant swarm optimization. This paper proposes and presents 
a comparative evaluation of this method as a novel approach to Bayesian network structure learning.

The organization of the remainder of this paper is as follows. Section 2 presents the concept of 
structure learning in Bayesian Networks. Section 3 includes a brief introduction of Elephant Swarm 
Water Search Algorithm. We discuss in detail the methodology and present the experimental result 
in section 4. The conclusions are in section 5.

STRUCTURE LEARNING OF BAYESIAN NETWORKS

Fundamentally the Bayesian Network can be expressed using two components: (G, P). The first one, 
G(V; E) is the DAG covering the calculable group of vertices (or nodes), V, interconnected over marked 
edges (or links), E . The second one, P = {P (Xi | Pa (Xi))} represents the collection of conditional 
probabilistic distributions (CPD), individual to all variables Xi (vertices from a graph). Moreover, 
Pa(Xi) represents the collection of parents of the node Xi in G (Cowie, Oteniya, & Coles, 2007). 
Based on this model, a simple probabilistic combination for a (G; P) network can be represented via:
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A score function, on the other hand, depends on several criteria, including Bayesian approaches, 
information and entropy, and minimum description length (Campos, 2006). According to Bayesian 
inference rules, Bayesian - network posterior probability can express as:
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