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ABSTRACT

Design patterns of today play a fundamental role in software development and implementation and 
provide a wide range of design solutions for recurring problems. Most research in this area focus 
on the creation and update of design patterns in order to fill all the gaps produced by their original 
structures. The purpose of this article is to present the visitor design pattern, to show its advantages 
in the software development process, and to provide it in a new version that allows the software to be 
easily upgraded without making complex modifications. This contribution consists in updating the 
structure and implementation of the Visitor design pattern using the reflection mechanism.
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INTRODUCTION

Design patterns play an essential role in Software Development Process (SDP) and are widely accepted 
as useful concepts for documenting, guiding and evolution of software systems (Le Guennec et al., 
2000; Hsueh et al., 2011). One of the main advantages of design patterns in SDP is to improve the 
programmer’s productivity and software quality (Prechelt et al., 2002; Khomh & Guéhéneuc, 2018). 
Moreover, design patterns provide a wide range of design solutions for recurring problems (Gamma 
et al., 1995). In recent decades, these solutions are taken into consideration in the SDP process and 
started using the new concepts of object-oriented design (OOD). These concepts are based on classes, 
interfaces, methods, and fields. The majority of researches in the area of design patterns centers on the 
creation and update of design patterns in turn to fill all the gaps produced by their original structures. 
Original design pattern structures are described by class diagrams based on Object Modeling Technique 
(OMT) (Rumbaugh et al., 1991). Recently, the unified modeling language (UML) provides better 
support for design patterns (Sunyé et al., 2000; France et al., 2004; Mak et al., 2004; Dennis et al. 
2015). In this paper, we use the UML class diagram because it is a de facto standard and it is well 
known among developers and Java as Object Oriented Language (OOL) for implementation. The 
purpose of this paper is to present the Visitor Design Pattern (VDP) as one of the 23 patterns invented 
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by GoF (Gamma et al., 1995), to show its advantages in SDP and to provide a new innovative version 
of it that allows software to be easily upgraded without making modifications on its original classes.

The report issued by Khashayar shows that the VDP has a good impact on software quality 
characteristics and especially on the expendability, simplicity, generality, software independence, 
learnability and scalability (Khashayar & Yann-GaÄel, 2004). A study conducted by Nanthaamornphong 
and Wetprasit shows that VDP improves the software design simplicity (Nanthaamornphong & 
Wetprasit, 2014). Moreover, the VDP has a good impact on software maintainability (Jeanmart et 
al., 2009). April & Abran summarize four categories of software maintenance: corrective, perfective, 
adaptive and preventive. Adaptive and preventive maintenance concern the ability of a system to 
answer a request for software’s improvement (e.g., adding a new task or responsibility) (April & 
Abran, 2006). VDP lets you define a new operation (method) without changing the classes of the 
elements on which it operates (Gamma et al., 1995). The principle is to create an interface Visitor 
that contains an abstract method for each visited class.

For instance, if we have two visited classes A and B, the Visitor interface will be as follow:

public interface Visitor { 
<T> T visit(A a); 
<T> T visit(B a); 
}

Moreover, we have to add, in each visited class (maintainable class), a generic method called 
‘accept’, and prepare it for accepting visitor objects that define new responsibilities (methods). The 
body of the method ‘accept’ in each visited class is:

public class A { 
public <T> T accept(Visitor v) { 
return (T)v.visit(this) ; 
} 
} 
public class B { 
public <T> T accept(Visitor v) { 
return (T)v.visit(this) ; 
} 

The concrete visitor class which implements each visit() method is as follow:

public class concreteVisitor implements Visitor { 
public <T> T visit(A a){ 
……… 
} 
public <T> T visit(B a){ 
……… 
} 
}

This original visitor design pattern has limitations. Patti and Hill presented in their survey report 
a summary of 10 limitations: Prior knowledge of the arguments and return type, adding new elements 
is difficult, necessity of accept method, partial visitation, structure extension requires regeneration 
of traversal code, little traversal control, implementation inheritance not supported, violation of 
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