
DOI: 10.4018/IJSI.2020010106

International Journal of Software Innovation
Volume 8 • Issue 1 • January-March 2020

﻿
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

92

Visitor Design Pattern Using
Reflection Mechanism
Bilal Hussein, Lebanese University, Beirut, Lebanon

Aref Mehanna, Lebanese University, Beirut, Lebanon

Yahia Rabih, Lebanese University, Beirut, Lebanon

ABSTRACT

Design patterns of today play a fundamental role in software development and implementation and
provide a wide range of design solutions for recurring problems. Most research in this area focus
on the creation and update of design patterns in order to fill all the gaps produced by their original
structures. The purpose of this article is to present the visitor design pattern, to show its advantages
in the software development process, and to provide it in a new version that allows the software to be
easily upgraded without making complex modifications. This contribution consists in updating the
structure and implementation of the Visitor design pattern using the reflection mechanism.

Keywords
Design Pattern, Introspection, Reflection, Software Development Process, Software Evolution, Software
Maintenance, Visitor Pattern

INTRODUCTION

Design patterns play an essential role in Software Development Process (SDP) and are widely accepted
as useful concepts for documenting, guiding and evolution of software systems (Le Guennec et al.,
2000; Hsueh et al., 2011). One of the main advantages of design patterns in SDP is to improve the
programmer’s productivity and software quality (Prechelt et al., 2002; Khomh & Guéhéneuc, 2018).
Moreover, design patterns provide a wide range of design solutions for recurring problems (Gamma
et al., 1995). In recent decades, these solutions are taken into consideration in the SDP process and
started using the new concepts of object-oriented design (OOD). These concepts are based on classes,
interfaces, methods, and fields. The majority of researches in the area of design patterns centers on the
creation and update of design patterns in turn to fill all the gaps produced by their original structures.
Original design pattern structures are described by class diagrams based on Object Modeling Technique
(OMT) (Rumbaugh et al., 1991). Recently, the unified modeling language (UML) provides better
support for design patterns (Sunyé et al., 2000; France et al., 2004; Mak et al., 2004; Dennis et al.
2015). In this paper, we use the UML class diagram because it is a de facto standard and it is well
known among developers and Java as Object Oriented Language (OOL) for implementation. The
purpose of this paper is to present the Visitor Design Pattern (VDP) as one of the 23 patterns invented

International Journal of Software Innovation
Volume 8 • Issue 1 • January-March 2020

93

by GoF (Gamma et al., 1995), to show its advantages in SDP and to provide a new innovative version
of it that allows software to be easily upgraded without making modifications on its original classes.

The report issued by Khashayar shows that the VDP has a good impact on software quality
characteristics and especially on the expendability, simplicity, generality, software independence,
learnability and scalability (Khashayar & Yann-GaÄel, 2004). A study conducted by Nanthaamornphong
and Wetprasit shows that VDP improves the software design simplicity (Nanthaamornphong &
Wetprasit, 2014). Moreover, the VDP has a good impact on software maintainability (Jeanmart et
al., 2009). April & Abran summarize four categories of software maintenance: corrective, perfective,
adaptive and preventive. Adaptive and preventive maintenance concern the ability of a system to
answer a request for software’s improvement (e.g., adding a new task or responsibility) (April &
Abran, 2006). VDP lets you define a new operation (method) without changing the classes of the
elements on which it operates (Gamma et al., 1995). The principle is to create an interface Visitor
that contains an abstract method for each visited class.

For instance, if we have two visited classes A and B, the Visitor interface will be as follow:

public interface Visitor {
<T> T visit(A a);
<T> T visit(B a);
}

Moreover, we have to add, in each visited class (maintainable class), a generic method called
‘accept’, and prepare it for accepting visitor objects that define new responsibilities (methods). The
body of the method ‘accept’ in each visited class is:

public class A {
public <T> T accept(Visitor v) {
return (T)v.visit(this) ;
}
}
public class B {
public <T> T accept(Visitor v) {
return (T)v.visit(this) ;
}

The concrete visitor class which implements each visit() method is as follow:

public class concreteVisitor implements Visitor {
public <T> T visit(A a){
………
}
public <T> T visit(B a){
………
}
}

This original visitor design pattern has limitations. Patti and Hill presented in their survey report
a summary of 10 limitations: Prior knowledge of the arguments and return type, adding new elements
is difficult, necessity of accept method, partial visitation, structure extension requires regeneration
of traversal code, little traversal control, implementation inheritance not supported, violation of

14 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/visitor-design-pattern-using-reflection-

mechanism/243382

Related Content

MMT: A Tool for Observing Metrics in Software Projects
Pekka Mäkiaho, Katriina Vartiainenand Timo Poranen (2022). Research Anthology on

Agile Software, Software Development, and Testing (pp. 1077-1089).

www.irma-international.org/chapter/mmt/294510

Strengthening Post-Disaster Management Activities by Rating Social Media

Corpus
Banujan Kuhaneswaran, Banage T. G. S. Kumaraand Incheon Paik (2020).

International Journal of Systems and Service-Oriented Engineering (pp. 34-50).

www.irma-international.org/article/strengthening-post-disaster-management-activities-by-rating-

social-media-corpus/263787

Governing the Service-Driven Environment: Tools and Techniques
Leo Shuster (2013). Service-Driven Approaches to Architecture and Enterprise

Integration (pp. 210-240).

www.irma-international.org/chapter/governing-service-driven-environment/77951

Differentiated Process Support for Large Software Projects
Alf Inge Wangand Carl-Fredrik Sørensen (2009). Software Applications: Concepts,

Methodologies, Tools, and Applications (pp. 2359-2378).

www.irma-international.org/chapter/differentiated-process-support-large-software/29511

Product Backlog and Requirements Engineering for Enterprise Application

Development
Chung-Yeung Pang (2020). Software Engineering for Agile Application Development

(pp. 1-29).

www.irma-international.org/chapter/product-backlog-and-requirements-engineering-for-

enterprise-application-development/250434

http://www.igi-global.com/article/visitor-design-pattern-using-reflection-mechanism/243382
http://www.igi-global.com/article/visitor-design-pattern-using-reflection-mechanism/243382
http://www.igi-global.com/article/visitor-design-pattern-using-reflection-mechanism/243382
http://www.irma-international.org/chapter/mmt/294510
http://www.irma-international.org/article/strengthening-post-disaster-management-activities-by-rating-social-media-corpus/263787
http://www.irma-international.org/article/strengthening-post-disaster-management-activities-by-rating-social-media-corpus/263787
http://www.irma-international.org/chapter/governing-service-driven-environment/77951
http://www.irma-international.org/chapter/differentiated-process-support-large-software/29511
http://www.irma-international.org/chapter/product-backlog-and-requirements-engineering-for-enterprise-application-development/250434
http://www.irma-international.org/chapter/product-backlog-and-requirements-engineering-for-enterprise-application-development/250434

