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ABSTRACT

The energy of a graph G is defined as the sum of the absolute values of the eigenvalues of its adjacency 
matrix. The graph energy has close correlation with the total pi-electron energy of molecules calculated 
with Huckel molecular orbital method in chemistry. A graph whose energy is greater than the energy 
of complete graph of same order is called hyperenergetic graph. A non-complete graph having energy 
equal to the energy of complete graph is called borderenergetic graph. Two non-cospectral graphs are 
said to be equienergetic graphs if they have same energy. In this chapter, the results on graph energy 
are reported. Various bounds for graph energy and its characterization are summarized. Construction 
of hyperenergetic, borderenergetic, and equienergetic graphs are reported.

INTRODUCTION

The energy of a graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. It 
has a correlation with the total π-electron energy of a molecule in the quantum chemistry as calculated 
with the Huckel molecular orbital method (Gutman & Polansky, 1986).

Let G be a finite, simple, undirected graph with vertex set V(G) and edge set F(G) The number of 
vertices of G is denoted by n and the number of edges of G is denoted by m. If V(G) = {v1, v2, ..., vn} then 
the adjacency matrix of G is a square matrix A(G) = [aij] of order n in which aij = 1, if the vertex vi is 
adjacent to the vertex vj and aij = 0, otherwise. The characteristic polynomial of A(G) denoted by Φ(G: 
λ) = det(λI – A(G)), where I is an identity matrix of order n. The roots of the equation Φ(G: λ) = 0 are 
called the eigenvalues of G and they are labeled as λ1, λ2, ..., λn. Their collection is called the spectrum 
of G denoted by Spec(G) (Cvetkovic, Doob & Sachs, 1980).

If λ1, λ2, ..., λk are the distinct eigenvalues with respective multiplicities m1, m2, …, mk then we write 
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. Since A(G) is a real symmetric matrix, its eigenvalues are real and can 

be ordered as λ1 ≥ λ2 ≥ ... ≥ λn.

Energy of Graphs
Harishchandra S. Ramane
Karnatak University, India



268

Energy of Graphs
﻿

Two non-isomorphic graphs are said to be cospectral if they have same spectra. Details about the graph 
spectra can be found in the book (Cvetkovic, Doob & Sachs, 1980) and for graph theoretic terminology 
one can refer the book (Harary, 1999).

One of the chemical applications of spectral graph theory is based on the correspondence between 
the graph eigenvalues and the molecular orbital energy level of π-electron in conjugated hydrocarbons 
(Gutman & Polansky, 1986).

The molecular graph of a hydrocarbon is obtained as follows: the carbon atoms are represented by 
the vertices and two vertices are adjacent if and only if there is a carbon-carbon bond. Hydrogen atoms 
are ignored.

Within the Huckel molecular orbital (HMO) method (Huckel & Quantentheoretische Beitrage zum 
Benzolproblem, 1931), the energy level of π-electron in molecules of conjugated hydrocarbons are 
related to the eigenvalues of a molecular graph as εi = α + βi where α and β are empirical constants of 
the HMO model. The total energy of π-electrons denoted by Eπ is

E g
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where gi is the occupation number with energy εi and g1 + g2 + … + gn = n. This yields
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	 (1)

For majority of conjugated hydrocarbons gi = 2 if λi > 0 and gi = 0 if λi < 0. Therefore Eq. (1) can 
be written as

E n
iπ α β λ= +

+
∑2 ,	

where 
+
∑ indicates the summation over positive eigenvalues of the molecular graph.

Figure 1. Molecule and its molecular graph
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