
114

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

DOI: 10.4018/978-1-5225-8446-9.ch006

ABSTRACT

The JSON Schema language lacks explicit support for defining time-varying schemas of JSON docu-
ments. Moreover, existing JSON NoSQL databases (e.g., MongoDB, CouchDB) do not provide any
support for managing temporal data. Hence, administrators of JSON NoSQL databases have to use ad
hoc techniques in order to specify JSON schema for time-varying instances. In this chapter, the authors
propose a disciplined approach, named Temporal JSON Schema (τJSchema), for the temporal manage-
ment of JSON documents. τJSchema allows creating a temporal JSON schema from (1) a conventional
JSON schema, (2) a set of temporal logical characteristics, for specifying which components of a JSON
document can vary over time, and (3) a set of temporal physical characteristics, for specifying how the
time-varying aspects are represented in the document. By using such characteristics to describe tempo-
ral aspects of JSON data, τJSchema guarantees logical and physical data independence and provides
a low-impact solution since it requires neither updates to existing JSON documents nor extensions to
related JSON technologies.

A Disciplined Approach
to Temporal Evolution

and Versioning Support
in JSON Data Stores

Safa Brahmia
University of Sfax, Tunisia

Zouhaier Brahmia
 https://orcid.org/0000-0003-0577-1763

University of Sfax, Tunisia

Fabio Grandi
 https://orcid.org/0000-0002-5780-8794

University of Bologna, Italy

Rafik Bouaziz
University of Sfax, Tunisia

115

A Disciplined Approach to Temporal Evolution and Versioning Support in JSON Data Stores
﻿

INTRODUCTION

JSON (IETF, 2017) is a standard format for interchanging data between all programming languages
(EMCA, 2017). On the Web, it is usually used for structuring and sending data from a server to a client
or vice versa, so that they could be displayed on a Web page or processed by a Web service. In the data-
base context, JSON is also a new database model for NoSQL data (Cattell, 2010; Tiwari, 2011; Pokorný,
2013; Davoudian et al., 2018), whatever they are structured or semi-structured. Due to the dynamic nature
of modern computer science applications (e.g., social networks, IoT, cloud computing, smart cities),
JSON documents that are exploited by these applications —like other application components such as
scripts’ source code and graphical user interfaces— evolve over time to reflect changes that occur in
user requirements and in the modeled reality. Moreover, several applications (like mobile, GIS, e-health
and e-government applications) necessitate keeping track of JSON data evolution with regard to time,
requiring time-varying JSON documents to be represented, stored and retrieved.

However, the current JSON format and state-of-the-art JSON NoSQL database systems (e.g., MongoDB,
CouchDB, DocumentDB, Couchbase Server, MarkLogic, OrientDB, RethinkDB, Riak, Elasticsearch)
and JSON management tools do not provide any built-in support for temporal JSON documents, despite
the steady interest for temporal and evolution aspects among researchers and practitioners (Cuzzocrea,
2015). In particular, also the latest JSON Schema specification (IETF, 2018) lacks explicit support for
time-varying data, both at schema and instance levels. Thus, JSON NoSQL database administrators
(JNoDBA) (i.e., any person who is in charge of the maintenance of either a JSON NoSQL database or
a JSON repository) must use ad hoc techniques when there is a need, for example, to specify a JSON
Schema for time-varying JSON documents.

According to what precedes, we think that if we would like to efficiently handle JSON document
evolution over time and to allow temporal queries to be executed on time-varying JSON documents, a
comprehensive temporal JSON NoSQL database management system is required. To this purpose, we
present in this chapter an approach, called τJSchema, for managing temporal JSON documents through
the use of a temporal JSON schema. In fact, we want to introduce with τJSchema a disciplined approach
to the temporal extension of JSON Schema, similar to what has been done with the τXSchema approach
(Currim et al., 2004; Snodgrass et al., 2008) to XML Schema (W3C, 2004) management. τXSchema is
a well-known approach in the temporal XML database (Brahmia & Bouaziz, 2008; Dyreson & Grandi,
2018) community, which consists of a data model equipped with a suite of tools for managing temporal
XML documents.

Since it is proposed as a τXSchema-like approach, τJSchema allows constructing a temporal JSON
schema from a conventional (i.e., non-temporal) JSON schema and a set of temporal logical and tem-
poral physical characteristics. Temporal logical characteristics identify which components of a JSON
document can vary over time; temporal physical characteristics specify how the time-varying aspects
are represented in the document. By using both temporal schema and temporal characteristics to intro-
duce temporal aspects in the conventional JSON NoSQL world, our framework (i) guarantees logical
and physical data independence (Burns et al., 1986) for temporal JSON schemas and (ii) provides a
low-impact solution since it requires neither modifications of existing JSON documents, nor extensions
to all related JSON technologies (including the JSON format, the JSON Schema specification, existing
JSON/JSON Schema tools and APIs, and JSON NoSQL databases).

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/a-disciplined-approach-to-temporal-evolution-

and-versioning-support-in-json-data-stores/230686

Related Content

Formal Specifications of Software Model Evolution Using Contracts
Claudia Ponsand Gabriel Baum (2005). Advances in UML and XML-Based Software Evolution (pp. 184-

208).

www.irma-international.org/chapter/formal-specifications-software-model-evolution/4936

Use of UML Stereotypes in Business Models
Daniel Brandon Jr. (2003). UML and the Unified Process (pp. 262-272).

www.irma-international.org/chapter/use-uml-stereotypes-business-models/30546

The CORAS Methodology: Model-based Risk Assessment Using UML and UP
Folker den Braber, Theo Dimitrakos, Bjorn A. Gran, Mass S. Lund, Ketil Stolenand Jan O. Aagedal (2003).

UML and the Unified Process (pp. 332-357).

www.irma-international.org/chapter/coras-methodology-model-based-risk/30550

Developing Requirements Using Use Case Modeling and the Volere Template: Establishing a

Baseline for Evolution
Paul Crowther (2005). Advances in UML and XML-Based Software Evolution (pp. 141-153).

www.irma-international.org/chapter/developing-requirements-using-use-case/4934

Systematic Design of Web Applications with UML
Rolf Hennickerand Nora Koch (2001). Unified Modeling Language: Systems Analysis, Design and

Development Issues (pp. 1-20).

www.irma-international.org/chapter/systematic-design-web-applications-uml/30568

http://www.igi-global.com/chapter/a-disciplined-approach-to-temporal-evolution-and-versioning-support-in-json-data-stores/230686
http://www.igi-global.com/chapter/a-disciplined-approach-to-temporal-evolution-and-versioning-support-in-json-data-stores/230686
http://www.irma-international.org/chapter/formal-specifications-software-model-evolution/4936
http://www.irma-international.org/chapter/use-uml-stereotypes-business-models/30546
http://www.irma-international.org/chapter/coras-methodology-model-based-risk/30550
http://www.irma-international.org/chapter/developing-requirements-using-use-case/4934
http://www.irma-international.org/chapter/systematic-design-web-applications-uml/30568

