70

Chapter 4

A JSON-Based Fast and
Expressive Access Control
Policy Framework

Hao Jiang
New H3C Technologies Co. Ltd., China

Ahmed Bouabdallah
IMT Atlantique, France

ABSTRACT

Along with the rapid development of ICT technologies, new areas like Industry 4.0, 10T, and 5G have
emerged and brought out the need for protecting shared resources and services under time-critical and
energy-constrained scenarios with real-time policy-based access control. To achieve this, the policy
language needs to be very expressive but lightweight and efficient. These challenges are investigated and
a set of key requirements for such a policy language is identified. JACPoL is accordingly introduced as
a descriptive, scalable, and expressive policy language in JSON. JACPoL by design provides a flexible
and fine-grained ABAC style (attribute-based access control) while it can be easily tailored to express
other access control models. The design and implementation of JACPoL are illustrated together with its
evaluation in comparison with other existing policy languages. The result shows that JACPoL can be as
expressive as existing ones but more simple, scalable, and efficient. The performance evaluation shows
that JACPoL requires much less processing time and memory space than XACML.

INTRODUCTION

Policies represent sets of properties of information processing systems (Clarkson&Schneider, 2010).
Their implementation mainly rests on the IETF architecture (Yavatkar et al., 2000) initially introduced
to manage QoS policies in networks. It consists in two main entities namely the PDP (Policy Decision
Point) and the PEP (Policy Enforcement Point). The first one which is the smart part of the architecture
acts as a controller the goal of which consists in handling and interpreting policy events, and deciding in

DOI: 10.4018/978-1-5225-8446-9.ch004

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



A JSON-Based Fast and Expressive Access Control Policy Framework

accordance with the policy currently applicable, what action should be taken. The decision is transmitted
to the PEP which has to concretely carry it out.

Access control policies are a specific kind of security policies aiming to control the actions that
principals can perform on resources by permitting their access only to the authorized ones. Typically,
the access requests are intercepted and analyzed by the PEP, which then transfers the request details
to the PDP for evaluation and authorization decision (Yavatkar et al., 2000). In most implementations,
the stateless nature of PEP enables its ease of scale. However, the PDP has to consult the right policy
set and apply the rules therein to reach a decision for each request and thus is often the performance
bottleneck of policy-based access control systems. Therefore, a policy language determining how poli-
cies are expressed and evaluated is important and has a direct influence on the performance of the PDP.

Especially, in nowadays, protecting private resources in real-time has evolved into a rigid demand in
domains such as home automation, smart cities, health care services and intelligent transportation sys-
tems, etc., where the environments are characterized by heterogeneous, distributed computing systems
exchanging enormous volumes of time-critical data with varying levels of access control in a dynamic
network. An access control policy language for these environments needs to be very well-structured,
expressive but lightweight and easily extensible (Borders et al., 2005).

In this work, the authors investigate the relationship between the performance of the PDP, the language
that is used to encode the policies and the access requests that it decides upon, and identify a set of key
requirements for a policy language to guarantee the performance of the PDP. The authors argue that
JSON would be more efficient and suitable than other alternatives (XML, etc.) as a policy data format
in critical environments. According to these observations, the authors propose a simple but expressive
access control policy language (JACPoL) based on JSON. A PoC (Proof of Concept) has been conducted
through the implementation of JACPoL in a policy engine operated in re THINK testbed (re THINK Project
Testbed, 2016)). At last JACPoL is carefully positioned in comparison with existing policy languages.

The main contribution of this work is therefore the definition of JACPoL, which utilizes JSON to
encode a novel access control policy specification language with well-defined syntax and semantics.
The authors identify key requirements and technical trends for future policy languages. They incidentally
propose the new notion of Implicit Logic Operators (ILO), which can greatly reduce the size and com-
plexity of a policy set while providing fine-grained access control. Quantitative evaluations of JACPoL
by comparison to XACML show that JACPoL systematically requires much less time and memory space
than XACML.The authors also elaborate on the applicability of JACPoL on ABAC model, RBAC model
and their combinations or their by-products. Last but not least, their implementation leads to a novel and
performant policy engine adopting the PDP/PEP architecture (Yavatkar et al., 2000) and JACPoL policy
language based on Node.js' and Redis’.

The remainder of this chapter is structured as follows. In Section 2, the problematic is refined by
delimiting precisely its perimeter. Section 3 provides an illustration in depth with representative policy
examples of the design of the policy language in terms of the constructs, semantics and other important
features like Implicit Logic Operators, combining algorithms and implementation. Section 4 further
qualitatively evaluates JACPoL and compares it with other existing access control policy specification
languages. In section 5 a detailed performance evaluation is given. The ABAC-native nature of JACPoL
is detailed in section 6 along with a comprehensive discussion on other possible application of JACPoL
to ARBAC (Attribute-centric RBAC) and RABAC (Role-centric ABAC) security models. In Section 7
the authors summarize their work and discuss future research directions.

71



20 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/a-json-based-fast-and-expressive-access-

control-policy-framework/230684

Related Content

Use of UML Stereotypes in Business Models
Daniel Brandon Jr. (2003). UML and the Unified Process (pp. 262-272).
www.irma-international.org/chapter/use-uml-stereotypes-business-models/30546

Smart Education Using Internet of Things Technology

Palanivel Kuppusamy (2019). Emerging Technologies and Applications in Data Processing and
Management (pp. 385-412).
www.irma-international.org/chapter/smart-education-using-internet-of-things-technology/230697

Developing Requirements Using Use Case Modeling and the Volere Template: Establishing a

Baseline for Evolution
Paul Crowther (2005). Advances in UML and XML-Based Software Evolution (pp. 141-153).

www.irma-international.org/chapter/developing-requirements-using-use-case/4934

Abstracting UML Behavior Diagrams for Verification

Maria del Mar Gallardo, Jesus Martinez, Pedro Merinoand Ernesto Pimentel (2005). Software Evolution
with UML and XML (pp. 296-320).
www.irma-international.org/chapter/abstracting-uml-behavior-diagrams-verification/29617

Formalizing and Analyzing UML Use Case Hierarchical Predicate Transition Nets
Xudong He (2005). Advances in UML and XML-Based Software Evolution (pp. 154-183).
www.irma-international.org/chapter/formalizing-analyzing-uml-use-case/4935



http://www.igi-global.com/chapter/a-json-based-fast-and-expressive-access-control-policy-framework/230684
http://www.igi-global.com/chapter/a-json-based-fast-and-expressive-access-control-policy-framework/230684
http://www.irma-international.org/chapter/use-uml-stereotypes-business-models/30546
http://www.irma-international.org/chapter/smart-education-using-internet-of-things-technology/230697
http://www.irma-international.org/chapter/developing-requirements-using-use-case/4934
http://www.irma-international.org/chapter/abstracting-uml-behavior-diagrams-verification/29617
http://www.irma-international.org/chapter/formalizing-analyzing-uml-use-case/4935

