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ABSTRACT

The authors present correlation analysis between the centrality values observed for nodes (a computation-
ally lightweight metric) and the maximal clique size (a computationally hard metric) that each node is 
part of in complex real-world network graphs. They consider the four common centrality metrics: degree 
centrality (DegC), eigenvector centrality (EVC), closeness centrality (ClC), and betweenness centrality 
(BWC). They define the maximal clique size for a node as the size of the largest clique (in terms of the 
number of constituent nodes) the node is part of. The real-world network graphs studied range from 
regular random network graphs to scale-free network graphs. The authors observe that the correlation 
between the centrality value and the maximal clique size for a node increases with increase in the spectral 
radius ratio for node degree, which is a measure of the variation of the node degree in the network. They 
observe the degree-based centrality metrics (DegC and EVC) to be relatively better correlated with the 
maximal clique size compared to the shortest path-based centrality metrics (ClC and BWC).

INTRODUCTION

Network Science is a fast-growing discipline in academics and industry. It is the science of analyzing 
and visualizing complex real-world networks using graph theoretic principles. Several metrics are used 
to analyze the characteristics of the real-world network graphs; among them “centrality” is a commonly 
used metric. The centrality of a node is a measure of the topological importance of the node with respect 
to the other nodes in the network (Newman, 2010). It is purely a link-statistics based measure and not 
based on any offline information (such as reputation of the node, cost of the node, etc). The commonly 
used centrality metrics are degree centrality, eigenvector centrality, closeness centrality and betweenness 
centrality. Degree centrality (DegC) of a node is simply the number of immediate neighbors for the node 
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in the network. The eigenvector centrality (EVC) of a node is a measure of the degree of the node as 
well as the degree of its neighbor nodes. We refer to DegC and EVC as degree-based centrality metrics. 
Closeness centrality (ClC) of a node is the inverse of the sum of the shortest path distances of the node 
to every other node in the network. Betweenness centrality (BWC) of a node is the ratio of the number 
of shortest paths the node is part of for any source-destination node pair in the network, summed over 
all possible source-destination pairs that do not involve the particular node. We refer to ClC and BWC 
as shortest path-based centrality metrics. Computationally efficient polynomial-time algorithms have 
been proposed in the literature (Brandes, 2001; Strang, 2005; Cormen et. al., 2009; Newman, 2010) 
to determine exact values for each of the above centrality metrics; hence we categorize centrality as a 
computationally lightweight metric.

A “clique” is a complete sub graph of a graph (i.e., all the nodes that are part of the sub graph are 
directly connected to each other). Cliques are used as the basis to identify closely-knit communities 
in a network as part of studies on homophily and diffusion. Unfortunately, the problem of finding the 
maximum-sized clique in a graph is an NP-hard problem (Cormen et. al., 2009), prompting several exact 
algorithms and heuristics to be proposed in the literature (Pattabiraman et. al., 2013; Fortunato, 2010; 
Palla et. al., 2005; Sadi et. al., 2010; Tomita & Seki, 2003). In this chapter, we choose a recently proposed 
exact algorithm (Pattabiraman et. al., 2013) to determine the size of the maximum clique for large-scale 
complex network graphs and extend it to determine the size of the maximal clique that a particular node 
is part of. We define the maximal clique size for a node as the size of the largest clique (in terms of the 
number of constituent nodes) the node is part of. Note that the maximal clique for a node need not be 
the maximum clique for the entire network graph; but, the maximum clique for the entire graph could 
be the maximal clique for one or more nodes in the network.

Since the maximal clique size problem is a computationally hard problem and exact algorithms run 
significantly slower on large network graphs, our goal in this chapter is to explore whether the maximal 
clique size correlates well to one of the commonly studied computationally lightweight metrics, viz., 
centrality of the vertices, for complex real-world network graphs: if we observe a high positive correla-
tion between maximal clique size and one or more centrality metrics, we could then infer the ranking 
of the vertices based on the centrality values as the ranking of the vertices based on the maximal clique 
size in real-world network graphs. Ours will be the first chapter to conduct a correlation study between 
centrality and maximal clique size for real-world network graphs. To the best of our knowledge, we did 
not come across such a work that has done correlation study between these two metrics (and in general, 
a computationally hard metric vis-a-vis a computationally lightweight metric) for real-world network 
graphs. Throughout the chapter, we use the terms ‘node’ and ‘vertex’ as well as ‘link’ and ‘edge’ inter-
changeably. They mean the same.

Background

To the best of our knowledge, ours is the first work to focus on a correlation coefficient analysis between 
a computationally hard metric (maximal clique size for the individual vertices) with that of a compu-
tationally lightweight metric (centrality values of individual vertices) for complex real-world network 
graphs. The work available in the literature so far considers these two metrics separately. Recently, Li et 
al (2014) conducted a correlation coefficient analysis study among the centrality metrics for real-world 
network graphs. Centrality metrics have been widely studied for analysis and visualization of complex 
networks in several domains, ranging from biological networks to social networks (e.g., Koschutzki & 



 

 

14 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/clique-size-and-centrality-metrics-for-analysis-of-

real-world-network-graphs/214692

Related Content

Proposed Framework for Mobile Decision Support Systems for Higher Learning Institutions:

Mobile Decision Support Systems
Eliamani Sedoyekaand Sophia Shabani Baruti (2016). International Journal of Handheld Computing

Research (pp. 24-37).

www.irma-international.org/article/proposed-framework-for-mobile-decision-support-systems-for-higher-learning-

institutions/175346

Path Loss Model Tuning at GSM 900 for a Single Cell Base Station
Allam Mousa, Mahmoud Najjarand Bashar Alsayeh (2013). International Journal of Mobile Computing and

Multimedia Communications (pp. 47-56).

www.irma-international.org/article/path-loss-model-tuning-gsm/76395

Effect of Personal Innovativeness, Attachment Motivation and Social Norms on the Acceptance

of Camera Mobile Phones: An Empirical Study in an Arab Country
Kamel  Rouibahand Hasan A. Abbas (2010). International Journal of Handheld Computing Research (pp.

41-62).

www.irma-international.org/article/effect-personal-innovativeness-attachment-motivation/48503

Modelling and Simulation of Mobile Mixed Systems
Emmanuel Dubois, Wafaa Abou Moussa, Cédric Bachand Nelly de Bonnefoy (2008). Handbook of

Research on User Interface Design and Evaluation for Mobile Technology (pp. 346-363).

www.irma-international.org/chapter/modelling-simulation-mobile-mixed-systems/21841

Epsilon-Greedy-Based MQTT QoS Mode Selection and Power Control Algorithm for Power

Distribution IoT
Xinhong You, Pengping Zhang, Minglin Liu, Lingqi Linand Shuai Li (2023). International Journal of Mobile

Computing and Multimedia Communications (pp. 1-18).

www.irma-international.org/article/epsilon-greedy-based-mqtt-qos-mode-selection-and-power-control-algorithm-for-

power-distribution-iot/306976

http://www.igi-global.com/chapter/clique-size-and-centrality-metrics-for-analysis-of-real-world-network-graphs/214692
http://www.igi-global.com/chapter/clique-size-and-centrality-metrics-for-analysis-of-real-world-network-graphs/214692
http://www.irma-international.org/article/proposed-framework-for-mobile-decision-support-systems-for-higher-learning-institutions/175346
http://www.irma-international.org/article/proposed-framework-for-mobile-decision-support-systems-for-higher-learning-institutions/175346
http://www.irma-international.org/article/path-loss-model-tuning-gsm/76395
http://www.irma-international.org/article/effect-personal-innovativeness-attachment-motivation/48503
http://www.irma-international.org/chapter/modelling-simulation-mobile-mixed-systems/21841
http://www.irma-international.org/article/epsilon-greedy-based-mqtt-qos-mode-selection-and-power-control-algorithm-for-power-distribution-iot/306976
http://www.irma-international.org/article/epsilon-greedy-based-mqtt-qos-mode-selection-and-power-control-algorithm-for-power-distribution-iot/306976

