Chapter 60 Design of Compensators for Comb Decimation Filters

Gordana Jovanovic Dolecek Institute INAOE Puebla, Mexico

ABSTRACT

This chapter presents different methods proposed to compensate for the comb pass band droop. Two main groups of methods are elaborated: methods that require multipliers and multiplier-less methods. The width of pass band depends on the decimation factor and the decimation of the stage which follows the comb decimation stage. In that sense, the compensation can be considered as a one in the wideband, or in the narrowband. There exit methods which can be used for both: wideband and narrowband compensations (with different parameters). Usually there is a trade-off between the compensator complexity and the provided quality of compensation.

INTRODUCTION

Decimation is the process of decreasing the sampling rate by an integer, called decimation factor. Decimation has applications in communications, audio signal processing, Sigma Delta Analog to Digital converters, among others. In order to prevent aliasing (unwanted replicas of the input signal), the signal must be previously filtered by a low pass filter, called decimation filter (Jovanovic Dolecek, 2003). The comb filter is the simplest decimation filter usually used in the first decimation stage (Hogenauer, 1981). This filter does not require multipliers, because all its coefficients are equal to unity. In order to achieve correct performance, the comb decimation filter should have a flat pass band of interest. However, comb magnitude characteristic has a droop in the pass band of interest which may deteriorate the decimated signal. The solution is to compensate for a comb pass band droop by an additional simple filter, called compensator. Different methods are proposed for compensator designs. The objective of this paper is to categorize and describe the most important methods, proposed so far, and to propose some future direction for the compensator designs.

DOI: 10.4018/978-1-5225-7598-6.ch060

BACKGROUND

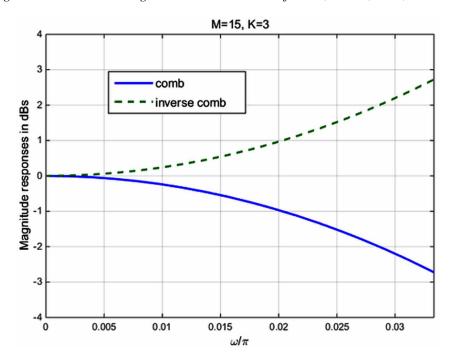
The transfer function of comb filter is given by the following equation:

$$H(z) = \left[\frac{1}{M} \frac{1 - z^{-M}}{1 - z^{-}} \right]^{K} \tag{1}$$

where *M* is the decimation factor and *K* is the order of the filter.

The magnitude response of the filter is given as:

$$\left| H(e^{j\omega}) \right| = \left| \frac{1}{M} \frac{\sin(\omega M/2)}{\sin(\omega/2)} \right|^{K} \tag{2}$$


The comb pass band is defined by the pass band edge (Kwentus &Willson, 1997):

$$\omega_p = \pi / RM \tag{3}$$

where *R* is the decimation factor of the stage that follows the comb decimation stage.

For values R<4, the pass band is considered as a wideband, and in an opposite case it is a narrowband. As an example, Figure 1 shows the wide pass band zoom (R=2), of the magnitude response of comb filter with the decimation factor M=12 and an order equal to K=3. Note that the response is not flat

Figure 1. Magnitude and inverse magnitude characteristics of comb, M=15, K=3, R=2

15 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/design-of-compensators-for-comb-decimation-filters/214664

Related Content

Commanding the Cloud by Moving a Camera Phone

Lambert Spaanenburg, Dalong Zhang, Miao Chenand Andreas Rossholm (2012). *Emergent Trends in Personal, Mobile, and Handheld Computing Technologies (pp. 251-263).*

www.irma-international.org/chapter/commanding-cloud-moving-camera-phone/65343

Optimal Channel Assignment Algorithm for Least Interfered Wireless Mesh Networks

Tarik Mountassir, Bouchaib Nassereddine, Abdelkrim Haqiqand Samir Bennani (2014). *International Journal of Mobile Computing and Multimedia Communications (pp. 54-67).*

www.irma-international.org/article/optimal-channel-assignment-algorithm-for-least-interfered-wireless-mesh-networks/113772

Geographical Recommender System Using User Interest Model Based on Map Operation and Category Selection

Kenta Oku, Rika Kotera, Daisuke Kitayamaand Kazutoshi Sumiya (2012). *International Journal of Handheld Computing Research (pp. 1-16).*

www.irma-international.org/article/geographical-recommender-system-using-user/69798

Multi-Agent Reinforcement Learning-Based Resource Management for V2X Communication

Nan Zhao, Jiaye Wang, Bo Jin, Ru Wang, Minghu Wu, Yu Liuand Lufeng Zheng (2023). *International Journal of Mobile Computing and Multimedia Communications (pp. 1-17).*

www.irma-international.org/article/multi-agent-reinforcement-learning-based-resource-management-for-v2x-communication/320190

Testing a Commercial BCI Device for In-Vehicle Interfaces Evaluation: A Simulator and Real-World Driving Study

Nicolas Louveton, Korok Sengupta, Rod McCall, Raphael Frankand Thomas Engel (2017). *International Journal of Mobile Computing and Multimedia Communications (pp. 1-13).*

www.irma-international.org/article/testing-a-commercial-bci-device-for-in-vehicle-interfaces-evaluation/183627