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ABSTRACT

Many new products fail, despite preliminary market surveys having determined considerable
potential market share. This effect is too systematic to be attributed to bad luck. We suggest
an explanation by presenting a new percolation theory model for product propagation, where
agents interact over a social network. In our model, agents who do not adopt the product
spread negative word of mouth to their neighbors, and so their neighborhood becomes less
susceptible to the product. The result is a dramatic increase in the percolation threshold. When
the effect of negative word of mouth is strong enough, it is shown to block any product from
spreading to a significant fraction of the network. So, rather then being rejected by a large
fraction of the agents, the product gets blocked by the rejection of a negligible fraction of the
potential market. The rest of the potential buyers do not adopt the product because they are
never exposed to it: the negative word of mouth spread by initial rejectors suffocates the
diffusion by negatively affecting the immediate neighborhood of the propagation front.

INTRODUCTION

Many new products fail to meet their expected
market share. While preliminary market sur-
veys may report a large portion of potential

buyers, the actual sales might reach only a
negligible fraction of the market (Bobrow &
Shafer, 1987; McMath & Forbes, 1998). Mas-
sive scientific research, as well as large finan-
cial, human, media, and technological resources,
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have been invested to improve market sam-
pling. However, there seems to be a “glass
ceiling” to the success rate of sales prediction.
In this chapter, we explain this phenomenon in
terms of a “market percolation phase transi-
tion.” We show that the eventual market share
of a product depends crucially on the nature of
interactions between potential buyers, more so
than simply on their number (Bass, 1969) or
even their network of connections (Solomon,
Weisbuch, Arcangelis, Jan, & Stauûer, 2000;
Solomon & Weisbuch, 1999; Weisbuch &
Solomon, 2002).

Percolation Theory

In general, percolation theory describes the
emergence of connected clusters. Historically,
percolation problems were first studied in chem-
istry, when Flory and Stockmayer studied Ge-
lation as a percolation process on a Bethe
lattice (Stockmayer, 1943). Since then, perco-
lation theory has been developed extensively by
both mathematicians and physicists (Stauûer,
1985), and was applied to a variety of other
subjects, from epidemiology to oil fields and
forest fires (Bunde & Havlin, 1999).

The main phenomenon studied in percola-
tion models is the emergence of a phase transi-
tion: a dramatic change in the qualitative behav-
ior of the system, triggered by an infinitesimal
change in the parameters. For example, a small
difference in virulence can make the difference
between a seasonal flu and a global epidemic.
Percolation theory offers a broad body of knowl-
edge for the study of such phenomena, and by
casting a problem in percolation terms one can
gain access to a wide set of intuitions and
rigorous results.

In short, percolation models involve agents
that interact across a network. The interaction
consists usually of influencing the state of a
neighbor agent (i.e., a “sick” agent can poten-

tially change the state of its “healthy” neighbors
by infecting them). Obviously, the affected
neighbor can now further affect one of its
neighbors, and so allow the effect to diffuse
across the network. Percolation theory studies
the conditions in which the set of affected
agents reaches a macroscopic size (a non-
vanishing fraction of the entire set of suscep-
tible agents). Interestingly enough, percolation
theory predicts that often such a “global” diffu-
sion will not take place, as the propagation may
die out before any significant fraction of the
system is reached by the diffusion dynamics.
The transition to the percolating regime, where
almost all susceptible agents are infected, is
usually very sharp. The values of the param-
eters at which this happens are called “critical
values.” As one varies the parameters through
their critical values, the system abruptly passes
from the “seasonal flu” phase to the “epidemic”
one. This is the famous percolation phase tran-
sition.

Mort (1991) suggested the application of
percolation theory to marketing: a product
spreads among adopters and can be said to
percolate (or not) through the social network.
Solomon and Weisbuch (1999) proposed look-
ing at “Social Percolation”; they regard society
as a network through which a social phenom-
enon (information/belief/product/behavior) may
or may not percolate. In the right conditions a
macroscopic cluster of adopters emerges, and
most of the susceptible people will eventually
be influenced. However, if the adoption rate
(“social virulence”) or the typical number of
neighbors per agent are below their critical
values (“percolation threshold”), the spread
would stop before any significant fraction of
the susceptible adopters is reached. As seen in
Figure 1, if the proportion of susceptible agents
is below the percolation threshold, they form
disjoint little islands (Figure 1(a)). In this case a
propagation that starts on one of the islands can
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