
���

Chapter XXIV
Class Patterns and Templates in

Software Design
Julio Sanchez

Minnesota State University, Mankato, USA

Maria P. Canton
South Central College, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

This chapter describes the use of design patterns as reusable components in program design. The discussion
includes the two core elements: the class diagram and examples implemented in code. The authors believe
that although precanned patterns have been popular in the literature, it is the patterns that we personally
create or adapt that are most useful. Only after gaining intimate familiarity with a particular class structure
will we be able to use it in an application. In addition to the conventional treatment of class patterns, the
discussion includes the notion of a class template. A template describes functionality and object relations
within a single class, while patterns refer to structures of communicating and interacting classes. The class
template fosters reusability by providing a guide in solving a specific implementation problem. The chapter
includes several class templates that could be useful to the software developer.

DEsIGN PAttErNs

Engineers and architects have reused design
elements for many years (Alexander, Ishikawa,
Silverstein, Jacobson, Fiksdahl-King, & Angel,
1977); however, the notion of reusing elements of
software design dates back only to the early 1990s.
The work of Anderson (1990), Coplien (1992), and
Beck and Johnson (1994) set the background for the
book Design Patterns by Gamma, Helm, Johnson,

and Vlissides (1995), which many considered the
first comprehensive work on the subject.

The main justification for reusing program de-
sign components is based on the fact that the design
stage is one of the most laborious and time-consum-
ing phases of program development. Design reuse is
founded in the assumption that once a programmer
or programming group has found a class or object
structure that solves a particular design problem,
this pattern can then be reused in other projects, with

 ���

Class Patterns and Templates in Software Design

considerable savings in the design effort. Anyone
who has participated in the development of a sub-
stantial software project appreciates the advantages
of reusing program design components.

The present-day approach to design reuse is
based on a model of class associations and relation-
ships called a class pattern or an object model. In
this sense, a pattern is a solution to a design problem.
Therefore, a programming problem is at the origin
of every pattern. From this assumption we deduce
that a pattern must offer a viable solution; it must
represent a class structure that can be readily coded
in the language of choice.

The fact that a programming problem is at the
root of every design pattern, and the assumption
that the solution offered by a particular pattern must
be readily implementable in code, are the premises
on which we base our approach to this topic. In the
context of this chapter we see a design pattern as
consisting of two core elements: a class diagram
and a coded example or template, fully implemented
in code. Every working programmer knows how
to take a piece of existing code and reengineer it
to solve the problem at hand. However, snippets
of code that may or may not compile correctly are
more a tease than a real aide.

Although we consider that design patterns are
a reasonable and practical methodology, we must
also add that it is the patterns that we ourselves
create, refine, or adapt that are the most useful. It
is difficult to believe that we can design and code
a program based on someone else’s class diagrams.
Program design and coding is a task too elaborate
and complicated to be done by imitation or by proxy.
A programmer must gain intimate familiarity with
a particular class and object structure before com-
mitting to its adoption in a project. These thoughts
lead to the conclusion that it is more important to
explain how we can develop our own design patterns
than to offer an extensive catalog of someone’s class
diagrams, which can be difficult to understand, and
even more difficult to apply.

cLAss tEMPLAtEs

Occasionally, a programmer or program designer’s
need is not for a structure of communicating and
interacting classes but for a description of the
implementation of a specific functionality within
a single class. In this case we can speak of a class
template rather than of a pattern. The purpose of
a class template is also to foster reusability by
providing a specific guide for solving a particular
implementation problem. In the following sections
we include several class templates that could be
useful to the practicing developer.

A Pattern is born

We begin our discussion by following through the
development of a design pattern, from the original
problem, through a possible solution, to its imple-
mentation in code, and concluding in a general-
purpose class diagram.

One of the most obvious and frequent uses of
dynamic polymorphism is in the implementation of
class libraries. The simplest usable architecture is
by means of an abstract class and several modules
in the form of derived classes that provide the spe-
cific implementations of the library’s functionality.
Client code accesses a polymorphic method in the
base class and the corresponding implementation
is selected according to the object referenced. But
in the real world a library usually consists of more
than one method. Since many languages allow mix-
ing virtual and nonvirtual functions in an abstract
class, it is possible to include nonvirtual methods
along with virtual and pure virtual ones. The prob-
lem in this case is that abstract classes cannot be
instantiated; therefore, client code cannot create an
object through which it can access the nonvirtual
methods in the base class. A possible but not very
effective solution is to use one of the derived classes
to access the nonvirtual methods in the base class.
Figure 1 depicts this situation.

The first problem of the class diagram in Figure
1 is that the client code accesses the nonvirtual

43 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/class-patterns-templates-software-design/21081

Related Content

Information Technology Industry Dynamics: Impact of Disruptive Innovation Strategy
Nicholas C. Georgantzasand Evangelos Katsamakas (2010). Emerging Systems Approaches in Information

Technologies: Concepts, Theories, and Applications (pp. 274-293).

www.irma-international.org/chapter/information-technology-industry-dynamics/38185

A Performance Improvement Model for Cloud Computing Using Simulated Annealing Algorithm
Geeta Singh, Santosh Kumarand Shiva Prakash (2022). International Journal of Software Innovation (pp. 1-

17).

www.irma-international.org/article/a-performance-improvement-model-for-cloud-computing-using-simulated-annealing-

algorithm/301222

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile

Platforms
Rishi Kalraand Amit Nanchahal (2009). Software Applications: Concepts, Methodologies, Tools, and

Applications (pp. 2584-2598).

www.irma-international.org/chapter/channel-optimization-field-sales-force/29523

A Hybrid Siamese-LSTM (Long Short-Term Memory) for Classification of Alzheimer's Disease
Aparna M.and Srinivasa B. Rao (2022). International Journal of Software Innovation (pp. 1-14).

www.irma-international.org/article/a-hybrid-siamese-lstm-long-short-term-memory-for-classification-of-alzheimers-

disease/309720

Cooperation Between Agents to Evolve Complete Programs
Ricardo Aler, David Camachoand Alfredo Moscardini (2003). Intelligent Agent Software Engineering (pp. 213-

228).

www.irma-international.org/chapter/cooperation-between-agents-evolve-complete/24151

http://www.igi-global.com/chapter/class-patterns-templates-software-design/21081
http://www.igi-global.com/chapter/class-patterns-templates-software-design/21081
http://www.irma-international.org/chapter/information-technology-industry-dynamics/38185
http://www.irma-international.org/article/a-performance-improvement-model-for-cloud-computing-using-simulated-annealing-algorithm/301222
http://www.irma-international.org/article/a-performance-improvement-model-for-cloud-computing-using-simulated-annealing-algorithm/301222
http://www.irma-international.org/chapter/channel-optimization-field-sales-force/29523
http://www.irma-international.org/article/a-hybrid-siamese-lstm-long-short-term-memory-for-classification-of-alzheimers-disease/309720
http://www.irma-international.org/article/a-hybrid-siamese-lstm-long-short-term-memory-for-classification-of-alzheimers-disease/309720
http://www.irma-international.org/chapter/cooperation-between-agents-evolve-complete/24151

