
��0

Chapter X
Decision Rule for Investment in

Frameworks of Reuse
Roy Gelbard

Bar-Ilan University, Israel

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Reuse helps to decrease development time, code errors, and code units. Therefore, it serves to improve
quality and productivity frameworks in software development. The question is not HOW to make the code
reusable, but WHICH amount of software components would be most beneficial, that is, cost-effective in
terms of reuse, and WHAT method should be used to decide whether to make a component reusable or not.
If we had unlimited time and resources, we could write any code unit in a reusable way. In other words, its
reusability would be 100%. However, in real life, resources are limited and there are clear deadlines to be
met. Given these constraints, decisions regarding reusability are not always straightforward. The current
research focuses on decision-making rules for investing in reuse frameworks. It attempts to determine the
parameters, which should be taken into account in decisions relating to degrees of reusability. Two new
models are presented for decision-making relating to reusability: (i) a restricted model and (ii) a non-re-
stricted model. Decisions made by using these models are then analyzed and discussed.

INtrODUctION

Reuse helps decrease development time, code er-
rors, and code units, thereby improving quality and
productivity frameworks in software development.
Reuse is based on the premise that educing a solution
from the statement of a problem involves more effort
(labor, computation, etc.) than inducing a solution
from a similar problem for which such efforts have

already been expended. Therefore, reuse challenges
are structural, organizational, and managerial, as
well as technical.

Economic considerations and cost-benefit
analyses in general, must be at the center of any
discussion of software reuse; hence, the cost-benefit
issue is not HOW to make the code reusable, but
WHICH amount of software components would
be most beneficial, that is, cost-effective for reuse,

 ���

Decision Rule for Investment in Frameworks of Reuse

and WHAT method should be used when deciding
whether to make a component reusable or not.

If we had unlimited time and resources, we
could write any code unit in a reusable way. In other
words, its reusability would be 100% (reusability
refers to the degree to which a code unit can be
reused). However, in real life, resources are limited
and there are clear deadlines to be met. Given these
constraints, reusability decisions are not always
straightforward.

A review of the relevant literature shows that
there are a variety of models used for calculating-
evaluating reuse effectiveness, but none apparently
focus on the issue of the degree to which a code is
reusable. Thus, the real question is how to make
reusability pragmatic and efficient, that is, a decision
rule for investment in reuse frameworks. The current
study focuses on the parameters, which should be
taken into account when making reusability degree
decisions. Two new models are presented here for
reusability decision-making:

• A non-restricted model, which does not take
into account time, resources, or investment
restrictions.

• A restricted model, which takes the above-
mentioned restrictions into account.

The models are compared, using the same data,
to test whether they lead to the same conclusions or
whether a contingency approach is preferable.

bAcKGrOUND

Notwithstanding differences between reuse ap-
proaches, it is useful to think of software reuse
research in terms of attempts to minimize the
average cost of a reuse occurrence (Mili, Mili, &
Mili, 1995).

[Search + (1-p) * (ApproxSearch +q * Adaptation
old + (1-q)* Development new)]

Where:

• Search (ApproxSearch) is the average cost of
formulating a search statement of a library of
reusable components and either finding one
that matches the requirements exactly (ap-
preciatively), or being convinced that none
exists.

• Adaptation old is the average cost of adapt-
ing a component returned by approximate
retrieval.

• Development new is the average cost of
developing a component that has no match,
exact or approximate, in the library.

For reuse to be cost-effective, the above must
be smaller than:

p *Development exact +(1-p)* q * Development
approx +(1-p)* (1-q)́ Development new)

Where:

• Development exact and development new
represent the average cost of developing cus-
tom-tailored versions of components in the
library that could be used as is, or adapted,
respectively. Note that all these averages are
time averages, and not averages of individual
components, that is, a reusable component is
counted as many times as it is used.

Developing reusable software aims at maximiz-
ing P (probability of finding an exact match) and
Q (probability of finding an approximate match),
that is, maximizing the coverage of the application
domain and minimizing adaptation for a set of com-
mon mismatches, that is, packaging components in
such a way that the most common old mismatches
are handled easily. Increasing P and Q does not
necessarily mean putting more components in the
library; it could also mean adding components that
are more frequently needed, because adding com-
ponents not only has its direct expenses (adaptation
costs), but also increases search costs.

6 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/decision-rule-investment-frameworks-reuse/21067

Related Content

Trust Building Process for Global Software Development Teams: A Review from the Literature
Adrián Hernández-López, Ricardo Colomo-Palacios, Ángel García-Crespoand Pedro Soto-Acosta (2014).

Software Design and Development: Concepts, Methodologies, Tools, and Applications (pp. 864-882).

www.irma-international.org/chapter/trust-building-process-global-software/77736

Preliminary Evaluation of a Software Security Learning Environment
Atsuo Hazeyamaand Masahito Saito (2014). International Journal of Software Innovation (pp. 26-39).

www.irma-international.org/article/preliminary-evaluation-of-a-software-security-learning-environment/120088

A Framework for Testing Code in Computational Applications
Diane Kelly, Daniel Hookand Rebecca Sanders (2014). Software Design and Development: Concepts,

Methodologies, Tools, and Applications (pp. 479-505).

www.irma-international.org/chapter/framework-testing-code-computational-applications/77719

Vojta-Therapy: A Vision-Based Framework to Recognize the Movement Patterns
Muhammad Hassan Khanand Marcin Grzegorzek (2017). International Journal of Software Innovation (pp. 18-

32).

www.irma-international.org/article/vojta-therapy/182534

A Structured Method for Security Requirements Elicitation concerning the Cloud Computing Domain
Kristian Beckers, Isabelle Côté, Ludger Goeke, Selim Gülerand Maritta Heisel (2014). International Journal of

Secure Software Engineering (pp. 20-43).

www.irma-international.org/article/a-structured-method-for-security-requirements-elicitation-concerning-the-cloud-computing-

domain/113725

http://www.igi-global.com/chapter/decision-rule-investment-frameworks-reuse/21067
http://www.igi-global.com/chapter/decision-rule-investment-frameworks-reuse/21067
http://www.irma-international.org/chapter/trust-building-process-global-software/77736
http://www.irma-international.org/article/preliminary-evaluation-of-a-software-security-learning-environment/120088
http://www.irma-international.org/chapter/framework-testing-code-computational-applications/77719
http://www.irma-international.org/article/vojta-therapy/182534
http://www.irma-international.org/article/a-structured-method-for-security-requirements-elicitation-concerning-the-cloud-computing-domain/113725
http://www.irma-international.org/article/a-structured-method-for-security-requirements-elicitation-concerning-the-cloud-computing-domain/113725

