Chapter II
A Methodology for Situated Analysis and Design

Vivienne Waller
Swinburne University of Technology, Australia

Robert B. Johnston
University of Melbourne, Australia & University College Dublin, Ireland

Simon K. Milton
University of Melbourne, Australia

ABSTRACT

This chapter presents a new high level methodology for the analysis and design of information systems specifically to support routine action at the operational level of organizations. The authors argue that traditional methods fail to adequately address the unique requirements of support for routine operational action. The main innovation of the methodology is the use of an action-centred approach derived from recent work on the nature of purposeful human action, and as such, emphasises both the information requirements for action and the dependence of action upon appropriately structured environments. A brief case study illustrates how using the methodology can sensitize the analyst to opportunities to increase human efficiency and effectiveness through lighter weight information systems.

INTRODUCTION

Situated analysis and design focuses on providing information in support of routine action at the operational level in organizations. It is the outcome of applying the situational theory of action to the analysis and design of information systems (Johnston, Waller, & Milton, 2005; Milton, Johnston, Lederman, & Waller, 2005; Waller, Johnston, & Milton, 2006). A high level methodology for situated analysis and design was developed in a 3 year funded research project employing iterative theory development and testing by means of two system development case studies (Johnston et al., 2005; Waller et al., 2006) and one comparative experiment (Waller, Johnston, & Milton, 2008).
The methodology was designed specifically to address the problem of high failure rates and poor user acceptance of traditionally designed information systems at the operational level. We have argued in a previous publication that the heart of this problem lies in the implicit theory of action which informs information systems design. The traditional information systems analysis and design approach, manifested in methodologies such as SSADM (British Standards Institution, 1994), is informed by a deliberative theory of goal-directed action. The deliberative theory posits that an actor creates a mental model of the state of the world and that action invariably results from reasoning about this mental model. The traditional information system then supplies information about the state of the world to inform the actor’s mental model (Johnston & Milton, 2002).

In other disciplines, there has been a move towards a situational theory of action, the idea that actors respond directly to structures in the environment in order to act appropriately. For example, work undertaken in artificial intelligence (Agre, 1997), situated cognition (Clancey, 1997; Lave & Wenger, 1991), animal behavior (Hendriks-Jansen, 1996), ecological psychology (Gibson, 1979; Heft, 2001), and situated action (Suchman, 1987) is based on this alternative theory of action.

The situated approach to systems design supplies the actor with information about action that enables routine action rather than deliberative action. Rather than attempting to represent the real world, the situated system informs actors when to do something and what to do without there being need for recourse to a representation of the state of the world; the information is located ‘in’ the world and can be observed directly. The purpose of this chapter is to provide a brief overview of the principles, concepts, and methods of situated information systems analysis and design. The approach is illustrated with a brief description of one of the system development cases conducted during its development.
Related Content

Investigating the Success of OSS Software Projects
www.irma-international.org/chapter/investigating-the-success-of-oss-software-projects/117296/

Functional Testing Using OCL Predicates to Improve Software Quality
www.irma-international.org/article/functional-testing-using-ocl-predicates-to-improve-software-quality/126638/

Coordination Languages and Models for Open Distributed Systems
www.irma-international.org/article/coordination-languages-models-open-distributed/77614/

Leveraging Web 2.0 for Online Learning
www.irma-international.org/chapter/leveraging-web-2-0-for-online-learning/188253/

New Trends on RIAs Development
www.irma-international.org/chapter/new-trends-on-rias-development/188273/