
28

Chapter IV
Managing Temporal Data

Abdullah Uz Tansel
Baruch College, CUNY, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

In general, databases store current data. How-
ever, the capability to maintain temporal data is
a crucial requirement for many organizations and
provides the base for organizational intelligence.
A temporal database maintains time-varying
data, that is, past, present, and future data. In this
chapter, we focus on the relational data model
and address the subtle issues in modeling and
designing temporal databases.

A common approach to handle temporal data
within the traditional relational databases is the
addition of time columns to a relation. Though
this appears to be a simple and intuitive solution,
it does not address many subtle issues peculiar to
temporal data, that is, comparing database states
at two different time points, capturing the periods
for concurrent events and accessing times beyond

these periods, handling multi-valued attributes,
coalescing and restructuring temporal data, and
so forth, [Gadia 1988, Tansel and Tin 1997].

There is a growing interest in temporal
databases. A first book dedicated to temporal
databases [Tansel at al 1993] followed by others
addressing issues in handling time-varying data
[Betini, Jajodia and Wang 1988, Date, Darwen
and Lorentzos 2002, Snodgrass 1999].

TIME IN DATABASES

The set T denotes time values and it is a total order
under ‘≤’ relationship. Because of its simplicity,
we will use natural numbers to represent time {0,
1 ... now}. The symbol 0 is the relative origin of
time and now is a special symbol that represents
the current time. Now advances according to the

 29

Managing Temporal Data

time granularity used. There are different time
granularities, such as seconds, minutes, hours,
days, month, year, etc. (for a formal definition
see [Betini, Jajodia and Wang 1988]).

A subset of T is called a temporal set. A tem-
poral set that contains consecutive time points {t1,
t2... tn} is represented either as a closed interval
[t1, tn] or as a half open interval [t1, tn+1). A tem-
poral element [Gadia 1988] is a temporal set that
is represented by the disjoint maximal intervals
corresponding to its subsets having consecutive
time points. Temporal sets, intervals, and temporal
elements can be used as time stamps for model-
ing temporal data and are essential constructs
in temporal query languages. Temporal sets and
temporal elements are closed under set theoretic
operations whereas intervals are not. However,
intervals are easier to implement. Time intervals,
hence temporal elements and temporal sets, can
be compared. The possible predicates are before,
after, meet, during, etc. [Allen 1983]. An interval
or a temporal set (element) that includes now
expends in its duration. Other symbols such as
forever or until changed are also proposed as al-
ternatives to the symbol now for easier handling
of future data.

There are various aspects of time in databases
[Snodgrass 1987]. Valid time indicates when a
data value becomes effective. It is also known as
logical or intrinsic time. On the other hand, the
transaction time (or physical time) indicates when
a value is recorded in the database. User defined
time is application specific and is an attribute
whose domain is time. Temporal databases are in
general append-only that is, new data values are
added to the database instead of replacing the old
values. A database that supports valid time keeps
historical values and is called a valid time (his-
torical) database. A rollback database supports
transaction time and can roll the database back
to any time. Valid time and transaction time are
orthogonal. Furthermore, a bitemporal database
that supports both valid time and transaction time
is capable of handling retroactive and post-active

changes on temporal data. In the literature, the
term temporal database is generically used to mean
a database with some kind of time support.

In this chapter we focus our discussion on the
valid time aspect of temporal data in relational
databases. However, our discussion can easily be
extended to databases that support transaction
time or both as well.

REPRESENTING TEMPORAL DATA

A temporal atom is a time stamped value, <t, v>
and represents a temporal value. It asserts that
the value v is valid over the period of time stamp
t that can be a time point, an interval, temporal
set, or a temporal element. Time points are only
suitable for values that are valid at a time point
not over a period. Time can be added to tuples
or attributes and hence, temporal atoms can be
incorporated differently into the relational data
model. To represent temporal atoms in tuple time
stamping, a relation is augmented with two attri-
butes that represents the end points of an interval
or a time column whose domain is intervals,
temporal sets, or temporal elements (temporally
ungrouped). Figure 1 depicts salary (SAL) history
of an employee, E1 where intervals or temporal
elements are used as time stamps with a time
granularity of month/year. Salary is 20K from
1/01 to 5/02 and 8/02 to 6/03. The discontinuity
is because the employee quitted at 6/02 and came
back at 8/02. The salary is 30K since 6/03. Figure
2 gives the same salary history in attribute time
stamping (temporally grouped). An attribute value
is a set of temporal atoms. Each relation has only
one tuple that carries the entire history. It is also
possible to create a separate tuple for each time
stamped value (temporal atom) in the history, i.e.
three tuples for Figure 2.b (two tuples for Figure
2.c). Temporally grouped data models are more
expressive than temporally ungrouped data mod-
els but their data structures are also more complex
[Clifford, Croker, and Tuzhilin 1993].

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/managing-temporal-data/20685

Related Content

Service Composition and Interaction in a SOC Middleware Supporting Separation of Concerns

with Flows and Views
Dickson K.W. Chiu, Qing Li, Patrick C. K. Hung, Zhe Shan, S. C. Cheung, Yu Yangand Matthias Farwick

(2011). Journal of Database Management (pp. 32-63).

www.irma-international.org/article/service-composition-interaction-soc-middleware/52992

Target Detection for Motion Images Using the Improved YOLO Algorithm
Tian Zhang (2023). Journal of Database Management (pp. 1-17).

www.irma-international.org/article/target-detection-for-motion-images-using-the-improved-yolo-algorithm/321554

The Psychology of Information Modeling
Keng Siau (2002). Advanced Topics in Database Research, Volume 1 (pp. 106-119).

www.irma-international.org/chapter/psychology-information-modeling/4324

Logistics Management Using Blockchain: A Review of Literature and Research Agenda
Nwosu Anthony Ugochukwuand S. B. Goyal (2022). Utilizing Blockchain Technologies in Manufacturing

and Logistics Management (pp. 122-144).

www.irma-international.org/chapter/logistics-management-using-blockchain/297161

An Efficient Index Structure for Spatial Databases
Kap S. Bangand Huizhu Lu (1996). Journal of Database Management (pp. 3-16).

www.irma-international.org/article/efficient-index-structure-spatial-databases/51164

http://www.igi-global.com/chapter/managing-temporal-data/20685
http://www.irma-international.org/article/service-composition-interaction-soc-middleware/52992
http://www.irma-international.org/article/target-detection-for-motion-images-using-the-improved-yolo-algorithm/321554
http://www.irma-international.org/chapter/psychology-information-modeling/4324
http://www.irma-international.org/chapter/logistics-management-using-blockchain/297161
http://www.irma-international.org/article/efficient-index-structure-spatial-databases/51164

