Chapter IX
Map Overlay Problem

Maikel Garma de la Osa
University of Havana, Cuba

Yissell Arias Sánchez
University of Havana, Cuba

ABSTRACT
Maps usually contain data from different sources (e.g., population, natural resources, cities, roads, infant mortality rate, etc.) When all the information is complied it is almost impossible to distinguish a certain type of data from the rest. Geographic Information Systems (GIS) usually organize maps into layers, each representing an aspect of the real world (de Hoop et al. 1993). Layers form thematic maps of a single type of data, allowing users to query each one separately.

INTRODUCTION
The main purpose of a GIS is to analyze geographic data. As map information is organized into layers, it is necessary to overlay the thematic maps involved whenever we need to query data that relates to various layers (e.g., which regions with population larger than one million have infant mortality rate lower than a certain value?). Each thematic map can be seen as a partition of the plane into regions determined by points and lines. Overlaying two or more maps generates a
new map containing information about the relationship between them. Thus, overlaying is one of the most important analysis operations in GIS, allowing complex queries that can not be applied to the original layers separately.

Applications

There are many uses derived from overlaying subdivisions of the map, such as:

- Overlaying layers of geographical data in order to perform queries involving several layers.
- Area interpolation: given the population of a region A that overlaps a region B, estimate B’s population, assuming that it is proportional to the area of A that is covered by B.
- Boolean operations among polygons: union, intersection, difference.
- **Windowing**: operation for which a window is overlaid over the map and everything outside of the window is eliminated.
- Buffering: it is made around points, lines and polygons. If the *combined buffer* of several elements is needed, it is done as a **polygon overlay**.

STATE OF THE ART

A Brief History

A naive algorithm for overlaying maps would take each segment of one map and compare it with all the segments of the other looking for intersections. If each input maps have $O(n)$ segments, the algorithm runs in $O(n^2)$ time. But, this is low performance for the most typical input sizes (over 100,000 points). To improve the time it is convenient to follow a local processing principle, which means not checking for intersections between segments of distant regions because they do not intersect. It has been proven that a lower bound for the problem of finding all the intersection points between a set of n segments is $\Omega(n \log n + k)$, where k is the number of intersections, and it can be achieved using $O(n)$ space.
Related Content

Estimating Fractional Snow Cover in Mountain Environments with Fuzzy Classification
www.irma-international.org/article/estimating-fractional-snow-cover-mountain/68853/

BIM based Design Management of a Building Project Collaboratively Designed with a Foreign Design Firm in China: A Case Study

A Review of Geospatial Information Technology for Natural Disaster Management in Developing Countries
www.irma-international.org/article/review-geospatial-information-technology-natural/65557/

Spatial Information System Development: The Role of Information Systems Design Theory and Ontologies
www.irma-international.org/chapter/spatial-information-system-development/10125/

The Effects of Geometry on the P-Wave Seismic Response of Massive Mineral Deposits: Results From Analogue Modelling
www.irma-international.org/chapter/the-effects-of-geometry-on-the-p-wave-seismic-response-of-massive-mineral-deposits/187737/