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ABSTRACT

Graph and semi-structured data are usually modeled in relational processing frameworks as “thin” rela-
tions (node, edge, node) and processing such data involves a lot of join operations. Intermediate results 
of joins with multi-valued attributes or relationships, contain redundant subtuples due to repetition of 
single-valued attributes. The amount of redundant content is high for real-world multi-valued relationships 
in social network (millions of Twitter followers of popular celebrities) or biological (multiple references 
to related proteins) datasets. In MapReduce-based platforms such as Apache Hive and Pig, redundancy 
in intermediate results contributes avoidable costs to the overall I/O, sorting, and network transfer 
overhead of join-intensive workloads due to longer workflows. Consequently, providing techniques for 
dealing with such redundancy will enable more nimble execution of such workflows. This paper argues 
for the use of a nested data model for representing intermediate data concisely using nesting-aware 
dataflow operators that allow for lazy and partial unnesting strategies. This approach reduces the overall 
I/O and network footprint of a workflow by concisely representing intermediate results during most of 
a workflow’s execution, until complete unnesting is absolutely necessary. The proposed strategies are 
integrated into Apache Pig and experimental evaluation over real-world and synthetic benchmark data-
sets confirms their superiority over relational-style MapReduce systems such as Apache Pig and Hive.
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INTRODUCTION

Data intensive computing applications are increasingly relying on MapReduce (Dean & Ghemawat, 2008) 
platforms such as Hadoop (Bialecki, Cafarella, Cutting, & O’Malley, 2005), Dryad (Isard, Budiu, Yu, 
Birrell, & Fetterly, 2007), Hive (Thusoo et al., 2009), Pig (Olston, Reed, Srivastava, Kumar, & Tom-
kins, 2008) for achieving scalability. Systems such as Hive and Pig provide structured data processing 
primitives and limited automatic optimization techniques reminiscent of relational database systems. In 
these systems, a script describes a set of desired data operations (and their relationships) in a high-level 
language, which is subsequently compiled into a MapReduce workflow whose execution is coordinated 
over a Hadoop cluster.

Each MapReduce cycle implements the functionality of a subset of operations given in the script. 
For each such cycle, input is read in from the Hadoop distributed file system (HDFS), and partitioned 
across a set of slave nodes that act as mappers. Once the mappers finish execution of their function, a 
shuffle phase sorts, partitions and stores intermediate map output to local disks. The reducer (slave) 
nodes contact all mappers, and read and transfer their assigned partitions from the mapper nodes. When 
the reducer tasks complete, the output is saved back onto the HDFS, from which the next Map phase 
may read its input. Hence, it is clear that besides the amount of original input data, the amount of data 
materialized, sorted and transferred over the network during the shuffle phase have a significant impact 
on the overall costs of processing (Dittrich et al., 2010; Rao, Ramakrishnan, Silberstein, Ovsiannikov, 
& Reeves, 2012). While some initial data processing operations such as filtering steps reduce the origi-
nal size of data, some other operations such as the relational join operations are state-producing where 
outputs could be larger than inputs. Consequently, managing intermediate results in such situations is 
very important for workloads that are join-intensive.

When processing graph or semi-structured data using relational frameworks, data is typically captured 
as “thin” relations as ( node edge node, , ) for graph structured data or (Subject Property Object, , ) in the 
Semantic Web parlance. The lack of uniform structure in such data makes it harder to model them as 
“fatter” relations representing a collection of common attributes. The fine-grained model results in the 
need for multiple join operations for assembling related data.

Systems such as Pig and Hive translate such queries into execution plans in which each cycle pro-
cesses a set of joins that are on the same column. In graph-oriented view, such joins can be viewed as a 
star structure and are sometimes called star-joins. Join SJ1 in Figure 1 is a star-join between relations 
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, to reassemble tuples related to a product’s label, property, and features, 

respectively. Join J1’ is the join linking SJ1 with another star subquery SJ2 . Thus, the MapReduce ex-
ecution plan for this query will have 3 MR cycles. In general, such plans will have one MR cycle for 
each star-join, and ( n - 1) MR cycles to join the n  star subqueries. For graph-oriented data queries it is 
not unusual to have n  significantly larger than 2. This leads to longer data processing workflows. 
Given the I/O and network transfer costs associated with each cycle, longer data processing workflows 
are inherently expensive. Further, the costs compound across cycles for data processing workflows in-
volving multiple state-producing (join) operations.

Additionally, many real-world social network and biological datasets contain multi-valued relation-
ships e.g., millions of Twitter followers of popular celebrities, or multiple references to related proteins 
in Uniprot datasets. An issue with this in join-intensive processing is that many of the combinations of 
tuples generated by a join operation contain some redundancy. Specifically, the subtuple containing the 
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