
Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

81

DOI: 10.4018/978-1-5225-3707-6.ch004

ABSTRACT

Among the projects available in sourceforge.net, the three top ranked projects
are selected for studying the pattern of project tasks over a period of 6 years
(2005-2011). It is found that the number of tasks in projects decrease with
time in these projects. It is also observed that the amount of time taken to
complete the task decrease with time. The developers alloted to tasks in a
project, success rate the developers complete the tasks completely, and active
contribution to the project by completing the alloted tasks of the volunteers
are also studied.

INTRODUCTION

Software products are examples of complex systems. The complexity of
software is due to the large number of requirements such a product should
satisfy. Additionally, the development of software demands diverse skill
sets, technically and other, which one person cannot possibly posses. Any
software which is expected to run in real world is therefore built by a group of
developers. This feature of software development has forced the practitioners
to adopt some design principles to accommodate multiple developers working
on a project.

Studies of Project Tasks

82

Studies of Project Tasks

The earliest attempt to solve this problem wasto divide the software
development process into various related activities. All the process models
and methodologies used in software engineering embody this idea. The basic
activities of analysis, design, code, test and maintenance are common to all
devel- opment methods. This separation of concern gives an opportunity to
divide the software development into tasks which can be allotted to each
individual developer or groups ofdevelopers.

Another way to solve the problem of synchronising multiple developers
isfollowing the design principle of modularity. Modularity helps to isolate
functional elements of the system. One module may be debugged, improved,
or extended with minimal interaction to system discontinuity. As important
as modularity is specification.

The key to production success of any modular construct is a rigid
specification of the interfaces. They also help in the maintenance task by
supplying the documentation necessary to train, understand, and provide
maintenance.

The principles of separation of concern and modularity are applied
extensively in development of FOSS. Modularising the software component
allows parallelism and thus speeds up the process of development. Modularising
also allows the developers to select a particular task to complete. In this
chapter, the studies of such project tasks are undertaken. The number of tasks
in each project, time taken for completing the tasks, the allocation of tasks
to developers and the amount of tasks they complete are studied.

Number of Project Tasks

The activity in the FOSS project can be measured in different ways. The most
definite metric is the number of commits made to the source code. But that
does not capture the various other tasks undertaken by participants in the
project. There are very broad set of activities that occur in a FOSS project
like requesting new features, reporting bugs, support requests, documentation,
localisation and internationalisation. To cover all the possible tasks that occur
in a project, the Table PROJECT_TASK is used. The structure of this table
is given in Table 1.

The procedure for finding the number of tasks in the project P is as follows

FOR i in (1 to 54)
DO
FOR ALL in Project_Task

10 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/chapter/studies-of-project-tasks/193458

Related Content

MOOCs: Exploiting Networks for the Education of the Masses or Just a

Trend?
Vanessa Camilleri, Leonard Busuttiland Matthew Montebello (2015). Open Source

Technology: Concepts, Methodologies, Tools, and Applications (pp. 1282-1300).

www.irma-international.org/chapter/moocs/120969

Implications of Using Corpus Tools in Primary and Secondary Education
 (2020). Computer Corpora and Open Source Software for Language Learning:

Emerging Research and Opportunities (pp. 179-190).

www.irma-international.org/chapter/implications-of-using-corpus-tools-in-primary-and-

secondary-education/256703

Patchwork Prototyping with Open Source Software
M. Cameron Jones (2007). Handbook of Research on Open Source Software:

Technological, Economic, and Social Perspectives (pp. 126-140).

www.irma-international.org/chapter/patchwork-prototyping-open-source-software/21184

Free Software Philosophy and Open Source
Niklas Vainioand Tere Vadén (2012). International Journal of Open Source Software

and Processes (pp. 56-66).

www.irma-international.org/article/free-software-philosophy-and-open-source/101218

Locating Faulty Source Code Files to Fix Bug Reports
Abeer Hamdyand Abdelrahman E. Arabi (2022). International Journal of Open Source

Software and Processes (pp. 1-15).

www.irma-international.org/article/locating-faulty-source-code-files-to-fix-bug-reports/308791

http://www.igi-global.com/chapter/studies-of-project-tasks/193458
http://www.igi-global.com/chapter/studies-of-project-tasks/193458
http://www.irma-international.org/chapter/moocs/120969
http://www.irma-international.org/chapter/implications-of-using-corpus-tools-in-primary-and-secondary-education/256703
http://www.irma-international.org/chapter/implications-of-using-corpus-tools-in-primary-and-secondary-education/256703
http://www.irma-international.org/chapter/patchwork-prototyping-open-source-software/21184
http://www.irma-international.org/article/free-software-philosophy-and-open-source/101218
http://www.irma-international.org/article/locating-faulty-source-code-files-to-fix-bug-reports/308791

