
2053

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 87

DOI: 10.4018/978-1-5225-3923-0.ch087

ABSTRACT

Software Visualization is the field of Software Engineering that aims to help people to understand soft-
ware through the use of visual resources. It can be effectively used to analyze and understand the large
amount of data produced during software evolution. Several Software Evolution Visualization (SEV)
approaches have been proposed. The goals of the proposed approaches are varied, and they try to help
programmers and managers to deal with software evolution in their daily software activities. Despite
their goals, their applicability in real development scenarios is questionable. In this chapter, the authors
discuss the current state of the art and challenges in software evolution visualization, presenting issues
and problems related to the area, and they propose some solutions and recommendations to circumvent
them. Finally, the authors discuss some research directions for the SEV domain.

INTRODUCTION

Software evolution generally deals with large amounts of data that originates from heterogeneous sources
such as Software Configuration Management (SCM) repositories, Bug Tracking Systems (BTS), mailing
and project discussion lists. One of the key aspects of software evolution is to build theories and models
that enable us to understand the past and present, as well as predict future properties related to software
maintenance activities, and hence support software maintenance tasks.

Software Evolution
Visualization:

Status, Challenges, and
Research Directions

Renato Lima Novais
Federal Institute of Bahia, Brazil

Manoel Gomes de Mendonça Neto
Fraunhofer Project Center for Software and Systems Engineering at UFBA, Brazil

2054

Software Evolution Visualization

Software Visualization (SoftVis) is the field of Software Engineering (SE) that aims to help people
to understand software through the use of visual resources (Diehl, 2007), and it can be effectively used
to analyze and understand the large amount of data produced during software evolution. For this reason,
many researchers have been proposing Software Evolution Visualization (SEV) tools (Kuhn, Erni, Lore-
tan, Nierstrasz, 2010)(Voinea, Lukkien & Telea, 2007)(Fischer & Gall, 2004)(German, Hindle & Jordan,
2006)(Cepda, Magdaleno, Murta & Werner, 2010)(Eick, Steffen & Sumner Jr, 1992). In general, these
tools analyze the evolution of the software with respect to a set of software maintenance related questions.

Despite the goals of the software evolution visualization approaches, most have yet to be used in
industrial environments. SEV approaches usually provide good and attractive visual metaphors, but how
to use them within the software development process remains an open question. Several SEV tools are
proposed as proof of concepts that is not evolved anymore.

This chapter covers Software Evolution Visualization (SEV) approaches, providing information about
how SEV research is structured, synthesizing current evidence on the goals of the proposed approaches
and identifying key challenges for its use in practice. This text is based on a mapping study that was
carried out to analyze how the SEV area is structured (Novais et al., 2013a).

In the following sections we will discuss the current state and challenges in software evolution visual-
ization. We will present issues and problems related to the area, and propose some solutions and recom-
mendations to circumvent them. Finally, we will discuss some research directions for the SEV domain.

BACKGROUND

Software Visualization

Software visualization (SoftVis) can be defined as the mapping of any kind of software artifact in graphic
representations (Koschke, 2003) (Roman & Cox, 1992). SoftVis is very helpful because it transforms
intangible software entities and their relationships into visual metaphors that are easily interpretable by
human beings. Consider coupling among software modules as an example. Using a graph as a visual
metaphor, these modules can be represented as nodes and the coupling information can be represented
as directed edges to build an intuitive visual metaphor for their dependency. Without a visual represen-
tation, the only way to analyze this information would be to look inside the source code or at a table of
software metrics, a laborious task or one of great cognitive effort.

There are several classification taxonomies for SoftVis. Some divide SoftVis according to type of
visualized object. Diehl (2007), for example, divides software visualization into visualizing the struc-
ture, behavior and evolution of the software. Structure refers to visualizing static parts of the software.
Behavior refers to visualizing the execution of the software. Evolution refers to visualizing how software
evolves (Diehl, 2007). SoftVis can also be classified according to the metaphors it uses to represent
software. Among others, visualizations can use iconographic, pixel-based, matrix-based, graph-based
and hierarchical metaphors (Keim, 2002) (Ferreira de Oliveira & Levkowitz, 2003).

Software can also be visually analyzed from different perspectives (Carneiro et al., 2008)(Carneiro,
Santanna, & Mendonça, 2010)(Carneiro et al., 2010)(Carneiro & Mendonça, 2013). In this case, visu-
alization can be classified according to the point of view it provides to engineers to explore a software
system. The perspectives concern to the way in which we look to the software. In the context of soft-

13 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-evolution-visualization/192961

Related Content

The Economics and Econometrics of Global Innovation Index
Badar Alam Iqbaland Mohd Nayyer Rahman (2020). Disruptive Technology: Concepts, Methodologies,

Tools, and Applications (pp. 1375-1385).

www.irma-international.org/chapter/the-economics-and-econometrics-of-global-innovation-index/231246

Executing a Real-Time Response in an Agile Information System
Pankaj Chaudhary, James A. Rodgerand Micki Hyde (2019). Handbook of Research on Technology

Integration in the Global World (pp. 331-372).

www.irma-international.org/chapter/executing-a-real-time-response-in-an-agile-information-system/208805

Excess Entropy in Computer Systems
Charles Loboz (2018). Computer Systems and Software Engineering: Concepts, Methodologies, Tools, and

Applications (pp. 1011-1028).

www.irma-international.org/chapter/excess-entropy-in-computer-systems/192911

Multicultural Software Development: The Productivity Perspective
Heli Aramo-Immonen, Hannu Jaakkolaand Harri Keto (2012). Computer Engineering: Concepts,

Methodologies, Tools and Applications (pp. 1081-1098).

www.irma-international.org/chapter/multicultural-software-development/62499

Engineering the Roadmap of Reverse Innovation: Complexities in Driving Business Processes

From Local to Global Destinations
Pável Reyes-Mercado (2020). Disruptive Technology: Concepts, Methodologies, Tools, and Applications

(pp. 745-755).

www.irma-international.org/chapter/engineering-the-roadmap-of-reverse-innovation/231216

http://www.igi-global.com/chapter/software-evolution-visualization/192961
http://www.irma-international.org/chapter/the-economics-and-econometrics-of-global-innovation-index/231246
http://www.irma-international.org/chapter/executing-a-real-time-response-in-an-agile-information-system/208805
http://www.irma-international.org/chapter/excess-entropy-in-computer-systems/192911
http://www.irma-international.org/chapter/multicultural-software-development/62499
http://www.irma-international.org/chapter/engineering-the-roadmap-of-reverse-innovation/231216

