
1783

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 74

DOI: 10.4018/978-1-5225-3923-0.ch074

ABSTRACT

In this chapter, the authors describe their experiences in designing, developing, and teaching a course
on Software Architecture that tested both in an academic context with their graduate Computer Science
students and in an advanced context of professional updating and training with scores of system engineers
in a number of different companies. The course has been taught in several editions in the last five years.
The authors describe its rationale, the way in which they teach it differently in academia and in industry,
and how they evaluate the students’ learning in the different contexts. Finally, the authors discuss the
lessons learnt and describe how this experience is inspiring for the future of this course.

INTRODUCTION

What is the role of the software architecture inside a large mission-critical system? How is it created?
How is it managed? How can the concept foster software reuse and productivity? These questions are
quite relevant for engineering companies, which produce families of software intensive systems (Bus-
chmann, 1996). As software systems become larger, more complex, and more expensive, companies - in
particular system integrators - feel an increasing need for improving their productivity exploiting sound
and effective techniques for the definition, analysis, and evaluation of software architectures. This is
what we observed in a number of cooperations between academia and industry, and that motivated our
study of how Software Architecture can be taught.

Teaching Software
Architecture in Industrial
and Academic Contexts:

Similarities and Differences

Paolo Ciancarini
University of Bologna, Italy

Stefano Russo
University of Naples Federico II, Italy

1784

Teaching Software Architecture in Industrial and Academic Contexts
﻿

The initial question from which we started our study was: “how can one introduce and teach soft-
ware asset reuse and software architecture evaluation to engineers who have been designing systems
for years without explicitly dealing with these concepts?” Then we added a related question: “how can
our experience in teaching Software Architecture in an industrial context be imported in an academic
context of Computer Science students?”

When the field of Software Architecture emerged, it was argued it should be considered a discipline
in its own, separate from Computer Science and possibly encompassing Software Engineering (Cle-
ments, 2010). After almost twenty years the corpus of the scientific works in the field has developed
consistently, but there is still a large gap between this body of knowledge and what is actually needed
in academic and industrial settings. Many of the achievements in the field have not matured enough;
an example are Architecture Definition Languages (ADLs), that have not replaced - and are not likely
anymore to replace - standard modeling languages (Clements, 2012). Some others achievements are
more mature, for instance some tools for architectural analysis: in (Bernardo, 2001) is described a tool
for performance evaluation of a software architecture, whereas in (Sterling, 1996) is described a tool for
architecture animations. However, these tools still need to be tailored to specific software systems, and
even more to internal industrial practices.

The increase of the size and complexity of contemporary software-intensive systems raises critical
challenges to the engineering companies which build them to be integrated into larger systems of systems.
Production and management problems with software intensive systems are well known and related to
requirements engineering, software design, systems’ families management, and their continuous testing
integration and evolution.

Thus, teaching software architectures in an industrial context requires to meet a company’s expecta-
tions in terms of mature knowledge, special competences, and best practices transferred to practitioners,
that they can subsequently turn into the engineering life cycle of complex systems.

This is not easy to achieve, as architecting large-scale complex software systems - having tens of
thousands of requirements and millions of lines of code - requires very high abstraction and modeling
skills. A number of methods and solutions to these problems are based on the introduction of software
architecting in the industrial practice (Bass, 2012). However, to become effective an architecture-centric
development approach needs to be assimilated and put in everyday practice by the company personnel,
who need architectural education and training.

We have found that introducing Software Architecture principles, methods, and tools in an academic
context poses different problems because Computer Science students are less expert and more interested
in creativity and technology use rather than software reuse and architectural evaluations. Thus, in our
classes we emphasize the relationship of Software Architecture with programming languages and formal
methods for modeling and reasoning on software systems.

In this chapter we describe our experience in designing, developing, and teaching a course on Software
Architecture, that we tested both with our graduate Computer Science students in an academic context
and with several systems engineers in a number of different companies, in a context of professional
updating and training. The course has been taught in several editions in the last five years. We describe
its rationale, the way in which we teach it differently in academia and in industry, and how we evaluate
the students in the different contexts. Finally, we discuss the lessons we learnt and describe how this
experience is inspiring us for the future of this course.

15 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/teaching-software-architecture-in-industrial-and-

academic-contexts/192947

Related Content

Girls’ E-Mentoring in Science, Engineering, and Technology Based at the University of Illinois at

Chicago Women in Science and Engineering (WISE) Program
Sarah Shirk, Veronica Arreola, Carly Wobigand Karima Russell (2012). Computer Engineering: Concepts,

Methodologies, Tools and Applications (pp. 1144-1163).

www.irma-international.org/chapter/girls-mentoring-science-engineering-technology/62503

Effort Estimation Model for each Phase of Software Development Life Cycle
Sarah Afzal Safaviand Maqbool Uddin Shaikh (2012). Computer Engineering: Concepts, Methodologies,

Tools and Applications (pp. 238-246).

www.irma-international.org/chapter/effort-estimation-model-each-phase/62445

Attaining Semantic Enterprise Interoperability Through Ontology Architectural Patterns
Rishi Kanth Saripalleand Steven A. Demurjian (2018). Computer Systems and Software Engineering:

Concepts, Methodologies, Tools, and Applications (pp. 705-740).

www.irma-international.org/chapter/attaining-semantic-enterprise-interoperability-through-ontology-architectural-

patterns/192899

Exploring the Role of Open Innovation Intermediaries: The Case of Public Research Valorization
Pierre-Jean Barlatier, Eleni Giannopoulouand Julien Pénin (2020). Disruptive Technology: Concepts,

Methodologies, Tools, and Applications (pp. 1386-1402).

www.irma-international.org/chapter/exploring-the-role-of-open-innovation-intermediaries/231247

Security and Trust in Cloud Computing
Eric Kuada (2018). Cyber Security and Threats: Concepts, Methodologies, Tools, and Applications (pp.

1251-1271).

www.irma-international.org/chapter/security-and-trust-in-cloud-computing/203559

http://www.igi-global.com/chapter/teaching-software-architecture-in-industrial-and-academic-contexts/192947
http://www.igi-global.com/chapter/teaching-software-architecture-in-industrial-and-academic-contexts/192947
http://www.irma-international.org/chapter/girls-mentoring-science-engineering-technology/62503
http://www.irma-international.org/chapter/effort-estimation-model-each-phase/62445
http://www.irma-international.org/chapter/attaining-semantic-enterprise-interoperability-through-ontology-architectural-patterns/192899
http://www.irma-international.org/chapter/attaining-semantic-enterprise-interoperability-through-ontology-architectural-patterns/192899
http://www.irma-international.org/chapter/exploring-the-role-of-open-innovation-intermediaries/231247
http://www.irma-international.org/chapter/security-and-trust-in-cloud-computing/203559

