1029

Chapter 41

Model-Driven Reverse
Engineering of Open
Source Systems

Ricardo Perez-Castillo
University of Castilla-La Mancha, Spain

Mario Piattini
University of Castilla-La Mancha, Spain

ABSTRACT

Open source software systems have poor or inexistent documentation and contributors are often scattered
or missing. The reuse-based composition and maintenance of open source software systems therefore
implies that program comprehension becomes a critical activity if all the embedded behavior is to be
preserved. Program comprehension has traditionally been addressed by reverse engineering techniques
which retrieve system design models such as class diagrams. These abstract representations provide a
key artifact during migration or evolution. However, this method may retrieve large complex class dia-
grams which do not ensure a suitable program comprehension. This chapter attempts to improve program
comprehension by providing a model-driven reverse engineering technique with which to obtain business
processes models that can be used in combination with system design models such as class diagrams.
The advantage of this approach is that business processes provide a simple system viewpoint at a higher
abstraction level and filter out particular technical details related to source code. The technique is fully
developed and tool-supported within an R&D project about global software development in which col-
laborate two universities and five companies. The automation of the approach facilitates its validation
and transference through an industrial case study involving two open source systems.

INTRODUCTION

Production and distribution models of software industry have been transformed by the open source
initiative (Open Source Initiative, 2011). While several commercial software companies produce and
distribute software in a centralized way, the open source model advocates developing software in peer
production by bartering and collaboration (Raymond, 1999).

DOI: 10.4018/978-1-5225-3923-0.ch041

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



Model-Driven Reverse Engineering of Open Source Systems

The main advantage of open source code is that it maximizes the reuse of software and reduces de-
velopment efforts and cost regarding software access. From an economical viewpoint, the open source
model consequently allows companies to save a lot of money (Glass, 2004).

The open source’s advantages encourage many companies to use open source code. Some software
development companies employ open source code as a basis for developing new systems. Other com-
panies offer maintenance support for open source systems. However, when developers or maintainers
are faced with open source code, they can find some program comprehension difficulties, which prevent
agility in companies (Kotlarsky, Oshri, Kumar, & Hillegersberg, 2008). These problems are owing to the
team-cross and distributed development nature of open source code (Rigby, German, & Storey, 2008).
This nature implies a poor, confuse (or even inexistent) documentation and there could be not many
expert people since a source code system is usually maintained for many different people throughout
its lifecycle (Costa, Santana, & Souza, 2009). Program comprehension is, therefore, extremely needed
when maintainers try to use open source code (even more than non-open source software systems).

Program comprehension is a key reverse engineering activity which automates the analysis of the
behavior of existing software systems (Canfora, Di Penta, & Cerulo, 2011; Maletic & Marcus, 2001).
This activity is so important because it allows knowing all the meaningful information to be effectively
used in the next reengineering stages (i.e., restructuring and forward engineering), which is aimed at
migrating or evolving the existing software system.

There is awide variety of program comprehension techniques which are categorized in two approaches:
the static and dynamic analysis (T. Eisenbarth, Koschke, & Simon, 2001). Static analysis is based on the
compiler theory. These techniques syntactically analyze source code to recover structural elements (e.g.,
the system design based on class diagrams) or to obtain some metrics (e.g., number of lines of source
code, the cyclomatic complexity, the number of coupling methods, etc.). Moreover, dynamic analysis
focuses on the behavior of the system derived by its execution. This kind of techniques retrieves dead
code parts, detects execution bottlenecks, etc.

Traditional program comprehension techniques, however have some limitations. Firstly, traceability
between high-level representations and existing source code is error-prone, which makes it difficult
to restructure the abstract representations during the restructuring stage. Secondly, obtained abstract
representations have higher level of detail and complexity (Nugroho, 2009). This means that there are
several retrieved elements that might have been omitted to reduce the complexity of abstract representa-
tion and, therefore, improve its understandability (Gemino & Wand, 2005; Reijers & Mendling, 2010).

This chapter proposes a business-awareness program comprehension technique following model-
driven development principles. The proposal obtains business process models from an existing software
system. Business process models represent the sequence of coordinated business activities supported by
the system to achieve the common business goals of a company. Business processes, probably, are the
models at the highest abstraction level. This technique does not replace to other program comprehension
techniques (like those to obtain system design based on a set of class diagrams) but it complements them.
This chapter deals with the usage of both business process models and traditional class diagrams to get
a better comprehension. The main implication is that a better comprehension during reengineering of
open source systems leads to a better enterprise agility.

The proposal is aided by a tool especially developed to support the technique and facilitate its adop-
tion. The supporting tool makes it possible to conduct a case study involving some open source software
systems. The case study demonstrates that the main benefits of business-awareness program compre-
hension are that it hides some non-relevant details thus the understandability of open source software

1030



21 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/model-driven-reverse-engineering-of-open-

source-systems/192912

Related Content

Challenges on Porting Lattice Boltzmann Method on Accelerators: NVIDIA Graphic Processing
Units and Intel Xeon Phi

Claudio Schepke, Jodo V. F. Limaand Matheus S. Serpa (2018). Analysis and Applications of Lattice
Boltzmann Simulations (pp. 30-53).
www.irma-international.org/chapter/challenges-on-porting-lattice-boltzmann-method-on-accelerators/203086

A Methodology for Model-Based Reliability Estimation

Mohd Adham Isaand Dayang Norhayati Abang Jawawi (2018). Computer Systems and Software
Engineering: Concepts, Methodologies, Tools, and Applications (pp. 461-484).
www.irma-international.org/chapter/a-methodology-for-model-based-reliability-estimation/192888

A Case Study on Citation Network Analysis

(2018). Creativity in Load-Balance Schemes for Multi/Many-Core Heterogeneous Graph Computing:
Emerging Research and Opportunities (pp. 171-188).
www.irma-international.org/chapter/a-case-study-on-citation-network-analysis/195896

The China Brain Project: An Evolutionary Engineering Approach to Building China’s First
Artificial Brain Consisting of 10,000s of Evolved Neural Net Minsky-Like Agents

Hugo de Garis, Chen Xiaoxiand Ben Goertzel (2011). Kansei Engineering and Soft Computing: Theory and
Practice (pp. 330-359).

www.irma-international.org/chapter/china-brain-project/46407

The Commercialisation of University Engineering Projects: Entrepreneurship Processes and
Practices

Rebecca De Costerand Syakirah Mohamad Taib (2020). Disruptive Technology: Concepts, Methodologies,
Tools, and Applications (pp. 1569-1598).
www.irma-international.org/chapter/the-commercialisation-of-university-engineering-projects/231256



http://www.igi-global.com/chapter/model-driven-reverse-engineering-of-open-source-systems/192912
http://www.igi-global.com/chapter/model-driven-reverse-engineering-of-open-source-systems/192912
http://www.irma-international.org/chapter/challenges-on-porting-lattice-boltzmann-method-on-accelerators/203086
http://www.irma-international.org/chapter/a-methodology-for-model-based-reliability-estimation/192888
http://www.irma-international.org/chapter/a-case-study-on-citation-network-analysis/195896
http://www.irma-international.org/chapter/china-brain-project/46407
http://www.irma-international.org/chapter/the-commercialisation-of-university-engineering-projects/231256

