
206

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

DOI: 10.4018/978-1-5225-3923-0.ch009

ABSTRACT

Software development is a fast-changing area. New methods and new technologies emerge all the time.
As a result, the education of software engineering is generally considered not to be keeping pace with
the development of software engineering in industry. Given the limited resources in academia, it is unre-
alistic to purchase all the latest software tools for classroom usage. In this chapter, the authors describe
how free/open-source data and free/open-source tools are used in an upper-level software engineering
class at Indiana University South Bend. Depending on different learning objectives, different free/open-
source tools and free/open-source data are incorporated into different team projects. The approach
has been applied for two semesters, where instructor’s experiences are assembled and analyzed. The
study suggests (1) incorporating both free/open-source tools and free/open-source data in a software
engineering course so that students can better understand both development methods and development
processes and (2) updating software engineering course regularly in order to keep up with the advance
of development tools and development methods in industry.

Incorporating Free/Open-
Source Data and Tools in

Software Engineering Education
Liguo Yu

Indiana University South Bend, USA

David R. Surma
Indiana University South Bend, USA

Hossein Hakimzadeh
Indiana University South Bend, USA

207

Incorporating Free/Open-Source Data and Tools

1. INTRODUCTION

Software engineering is considered one of the most difficult topics in computer science program. Its
difficulty is not like theory courses, such as algorithm analysis, nor programming courses, such as data
structures. Software engineering is an empirical course. Students should learn software engineering
methods through hands-on experience, which might include real-world software development, real-
world customer interaction, real-world planning and estimation, and real-world decision-making and
problem-solving.

However, given the limited resources in academia, it is hard for students to learn hands-on experience
in a classroom environment. Software engineering educators have been working on this issue for years
and various approaches have been adopted to overcome this hurdle. For example, in some programs,
industry projects are introduced into the classroom (Hayes, 2002), where students practice software engi-
neering principles through solving challenging and complicated real world-problems. In other programs,
students are asked to participate in open-source software development (Lundell et al., 2007; Stamelos,
2008; Jaccheri & Osterlie, 2007), where the source code is available for analyzing and testing. In some
cases, students could be assigned to tackle a reported bug. For example, Papadopoulos et al. (2012; 2013)
have used free/libre open source software (FLOSS) projects to assist teaching software engineering for
at least four years. Their experiences are well documented and analyzed.

The two methods described above are proven approaches that can better integrate software engineer-
ing education with software industry practices. They all can be classified as real-world project-based
software engineering education.

The software engineering course offered at Indiana University South Bend is tool and data based,
where students learn software engineering methods through using software tools and analyzing software
data, more specifically, free/open-source tools and free/open-source data. In this chapter, we describe
how free/open-source tools and free/open-source data could be used in software engineering education
to reduce the gap between industry expectations and what the academia can deliver.

The remaining of the chapter is organized as follows. In Section 2, we review related work and in-
troduce our teaching approach. In Section 3, we describe our software engineering class, including the
teaching method and the teaching experience. In Section 4, we summarize the analysis of our teaching
approach. Conclusions and the improvement plan are presented in Section 5.

2. RELATED WORK AND OUR TEACHING APPROACH

Open-source software has been widely used in education (Lazic et al., 2011; Hoeppner & Boag, 2011),
especially in computer science education. In software engineering field, open-source software has special
usages. Because nowadays, software development largely depends on tools, which are computer software
program that can facilitate the analysis, design, implementation, testing, and project management in
software development. In other words, to be considered as a modern software engineer, one must know
how to use various CASE (computer aided software engineering) tools.

Given the limited resources in academia, it is unrealistic to purchase all the latest commercial devel-
opment tools for classroom usage. Therefore, open-source tools provide an opportunity for students to
explore the latest technology development in software industry. Moreover, both the commercial software

9 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/incorporating-freeopen-source-data-and-tools-in-

software-engineering-education/192879

Related Content

High-Performance Computing for Theoretical Study of Nanoscale and Molecular Interconnects
Rasit O. Topaloglu, Swati R. Manjariand Saroj K. Nayak (2012). Handbook of Research on Computational

Science and Engineering: Theory and Practice (pp. 78-97).

www.irma-international.org/chapter/high-performance-computing-theoretical-study/60356

An Intimate Relation: Human Beings with Humanoids
Elisabeth Damour (2011). Kansei Engineering and Soft Computing: Theory and Practice (pp. 169-179).

www.irma-international.org/chapter/intimate-relation-human-beings-humanoids/46397

Creativity in the Animation Industry
Zheng Liuand Lei Ma (2020). Disruptive Technology: Concepts, Methodologies, Tools, and Applications

(pp. 1429-1452).

www.irma-international.org/chapter/creativity-in-the-animation-industry/231250

Cloud Crime and Fraud: A Study of Challenges for Cloud Security and Forensics
Nimisha Singh (2018). Cyber Security and Threats: Concepts, Methodologies, Tools, and Applications (pp.

1334-1350).

www.irma-international.org/chapter/cloud-crime-and-fraud/203563

DQ Based Methods: Theory and Application to Engineering and Physical Sciences
Stefania Tomasiello (2012). Handbook of Research on Computational Science and Engineering: Theory

and Practice (pp. 316-346).

www.irma-international.org/chapter/based-methods-theory-application-engineering/60366

http://www.igi-global.com/chapter/incorporating-freeopen-source-data-and-tools-in-software-engineering-education/192879
http://www.igi-global.com/chapter/incorporating-freeopen-source-data-and-tools-in-software-engineering-education/192879
http://www.irma-international.org/chapter/high-performance-computing-theoretical-study/60356
http://www.irma-international.org/chapter/intimate-relation-human-beings-humanoids/46397
http://www.irma-international.org/chapter/creativity-in-the-animation-industry/231250
http://www.irma-international.org/chapter/cloud-crime-and-fraud/203563
http://www.irma-international.org/chapter/based-methods-theory-application-engineering/60366

