
191

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

DOI: 10.4018/978-1-5225-3923-0.ch008

ABSTRACT

Software development is uniquely different especially when compared to other engineering processes.
The abstractness of software products has a major influence on the entire software development life
cycle, which results in a number of uniquely important challenges. This chapter describes and discusses
Engineering Construction for Software Engineers (ECSE), an effective workshop that helps software
engineering students to understand some of these critical issues within a short period of time. In this
workshop, the students are required to develop a pseudo-software product from scratch. They could learn
about unique characteristics and risks of software development life cycle as well as other distinctive
phenomenon through the activities. The workshop can still be easily followed by students who are not
familiar with certain software development processes such as coding or testing.

INTRODUCTION

The intangibility of software makes it a highly unique product (Project Management Institute, 2008).
Undeniably, the development of software has a number of different traits compared to other engineer-
ing products. In a software development project, several issues, such as potential frequent changes of
requirements, low product visibility, inappropriate development models, and the need for customer
involvement, are critical (McConnell, 1997; Schmidt, Lyytinen, Keil, & Cule, 2001; Tiwana & Keil,
2004). Although these challenges can be addressed in traditional lectures, it is highly unlikely that the

ECSE:
A Pseudo-SDLC Game for

Software Engineering Class

Sakgasit Ramingwong
Chiang Mai University, Thailand

Lachana Ramingwong
Chiang Mai University, Thailand

192

ECSE

students can actually follow and understand their practical seriousness. For example, a lecturer can
describe how difficult and costly it is if a major change surfaces during the last stages of development.
Yet, it is not easy to imitate other associated issues such as conflicts between stakeholders, frustration
and the importance of problem-solving and negotiation skills.

Indeed, the most effective method to teach software engineering is to have the students learn through
an actual hands-on project. Yet, regardless of whether a traditional or agile model is chosen, the imple-
mentation usually takes days before the results can be clearly seen. Furthermore, hands-on project could
become considerably less effective if the group is bigger. Additionally, since general hands-on projects
mostly focus on coding, students who have less relevant skills usually feel uncomfortable and subsequently
fade away from the workshop. Indeed, this could be one of the least desirable outcomes from the class.

A number of researchers have attempted to implement games in their classes in order to overcome
such challenges (Caulfield, Xia, Veal, & Maj, 2011). These games can be roughly divided into two
groups, i.e. traditional games and computer-based games. Traditional games involve activities in which
the students can participate by using convenient physical tools such as paper, scissors, boards, cards and
dice. On the other hand, computer based games uncomplicatedly refers to games which the students need
to play via a computer application. Some of these games can be played in groups while others support
only a single player mode. Moreover, the settings and requirements of these games generally vary. Many
of these software engineering games are flexible and can be further tailored to match class objectives.

In-class competition can be an important factor to increase the workshop’s effectiveness (Hainey,
2009). With this factor included, the students are more likely to put more attention to the class. They
also tend to perform their actions more seriously and carefully.

This chapter introduces Engineering Construction for Software Engineers (ECSE), a game that at-
tempts to teach and simulate a complete concept of software development life cycle in only two and a
half hours. Instead of developing real software, the students are instructed to build a model house from
corrugated plastic board. During the activity, the participants can learn basic knowledge of software
engineering and the Software Development Life Cycle (SDLC). Although software development skills
are not required, it can greatly benefit the team. ECSE also implements a currency and resource man-
agement system in order to increase fun and competitive factors. The students are required to plan and
appropriately allocate their budget. There is no limitation on implementation strategies and approaches.
The winner is, undoubtedly, the group which makes the most profit from the entire process.

BACKGROUND

The software development life cycle (SDLC) varies based on the nature of software developers and
software organizations. The classic SDLC consists of five major phases i.e. requirements, design, con-
struction, testing, and maintenance. This entire cycle can be further tailored based on business needs.
Common modifications of the SDLC include the expanding, grouping, and revolving of existing phases
as well as adding specific activities such as initiation, prototyping, and retrospection.

On the other hand, agile software development models have their own manifesto. They place emphasis
on frequent working product delivery and do not follow the classic SDLC sequence. Agile practitioners
value changes, interactions, and collaboration above plans, tools, and contracts (Beck et al., 2001). Yet,

13 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/ecse/192878

Related Content

A Hybrid Approach of Regression-Testing-Based Requirement Prioritization of Web Applications
Varun Gupta (2018). Multidisciplinary Approaches to Service-Oriented Engineering (pp. 182-200).

www.irma-international.org/chapter/a-hybrid-approach-of-regression-testing-based-requirement-prioritization-of-web-

applications/205299

SecInvest : Balancing Security Needs with Financial and Business Constraints
Siv Hilde Houmb, Indrajit Rayand Indrakshi Ray (2012). Dependability and Computer Engineering:

Concepts for Software-Intensive Systems (pp. 306-328).

www.irma-international.org/chapter/secinvest-balancing-security-needs-financial/55334

A Two-Layer Approach to Developing Self-Adaptive Multi-Agent Systems in Open Environment
Xinjun Mao, Menggao Dongand Haibin Zhu (2018). Computer Systems and Software Engineering:

Concepts, Methodologies, Tools, and Applications (pp. 585-606).

www.irma-international.org/chapter/a-two-layer-approach-to-developing-self-adaptive-multi-agent-systems-in-open-

environment/192894

Exploration and Exploitation of Developers' Sentimental Variations in Software Engineering
Md Rakibul Islamand Minhaz F. Zibran (2021). Research Anthology on Recent Trends, Tools, and

Implications of Computer Programming (pp. 1889-1910).

www.irma-international.org/chapter/exploration-and-exploitation-of-developers-sentimental-variations-in-software-

engineering/261108

Contemporary Energy Management Systems and Future Prospects
Amir Manzoor (2021). Research Anthology on Recent Trends, Tools, and Implications of Computer

Programming (pp. 1984-2013).

www.irma-international.org/chapter/contemporary-energy-management-systems-and-future-prospects/261113

http://www.igi-global.com/chapter/ecse/192878
http://www.irma-international.org/chapter/a-hybrid-approach-of-regression-testing-based-requirement-prioritization-of-web-applications/205299
http://www.irma-international.org/chapter/a-hybrid-approach-of-regression-testing-based-requirement-prioritization-of-web-applications/205299
http://www.irma-international.org/chapter/secinvest-balancing-security-needs-financial/55334
http://www.irma-international.org/chapter/a-two-layer-approach-to-developing-self-adaptive-multi-agent-systems-in-open-environment/192894
http://www.irma-international.org/chapter/a-two-layer-approach-to-developing-self-adaptive-multi-agent-systems-in-open-environment/192894
http://www.irma-international.org/chapter/exploration-and-exploitation-of-developers-sentimental-variations-in-software-engineering/261108
http://www.irma-international.org/chapter/exploration-and-exploitation-of-developers-sentimental-variations-in-software-engineering/261108
http://www.irma-international.org/chapter/contemporary-energy-management-systems-and-future-prospects/261113

