
81

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

DOI: 10.4018/978-1-5225-3923-0.ch004

ABSTRACT

This chapter highlights one concept representing the human role in requirements engineering and
analysis for model synthesis. The production of design documentation to support model development
requires elicitation of user requirements. The process of requirement elicitation plays a primary role
in all Model-Driven Software Engineering (MDSE). Issues addressed include how requirements are
gathered by the use of surveys, interviews, and questionnaires, and the importance of using validated
constructs when gathering user information during requirement elicitation. Survey constructs, as used
in requirements engineering, are analogues to the models in the final engineering product. A solution
to improving the use of survey methods in the gathering of requirements is introduced. A small applica-
tion is shown that suggests an example use of this proposed solution. This review of current practices
explores areas where challenges are faced in the field with a concluding discussion that points to future
trends in this research field.

INTRODUCTION

The use of Model-Driven Software Engineering (MDSE) methods is a valuable approach to address
challenges requiring change from traditional software development regimes. One change from older
methods to MDSE results in end-users sharing involvement in all aspects of the development process.
For this reason and others, the software engineer is a facilitator between the end-user and the working
product. Another change impacting software development methods is the likelihood that final software
products often result from modifications or transformations of existing systems. Developers seldom have
the option of designing a system from the ground up; instead, systems are often syntheses of existing
products, uses, user practices, and data structures. The process of building an application can be seen as
the transformation and composition of multiple domain models to synthesize a functional system. The
process of building a software model delivers a system which is an abstract match with the problem

The Human Role in
Model Synthesis

Steven Gibson
California State University – Northridge, USA

82

The Human Role in Model Synthesis

conception of the users. One challenge addressed here is how to standardize verification of the elicita-
tion of the requirements.

Models encode human knowledge, experience, and expectations into graphical or structural forms.
The primary concern of this chapter is exploring the methods which best represent the mental models
of the users as part of a required system. This model representing the user requirements is described
as a construct for this discussion. The resulting MDSE system presents a realization of the requested,
required and projected functionality to address the domain challenge. The first focus, during require-
ments engineering, is on requirements elicitation, analysis, and interaction with the users. The next focus
is on the principles of using communication for building understanding between users and engineers
around the model systems. The model synthesis step directly follows from the successful requirements
engineering process. Model synthesis can be seen as resulting from appropriate formalization of require-
ments (Desel, 2002).

This chapter focuses on the importance of users and domain specialists during the requirements stage
of model development. The techniques discussed include writing and reading requirements, commu-
nicating with users about requirements, preparing documentation, synthesizing models, applying data
gathering methods, identifying essential domain knowledge, and exploring requirement assumptions.
Requirements analysis plays a role in the understanding of problems, communicating with users and
driving the system development process. Requirements engineering serves a key role in model-driven
software engineering. Boehm (1981) reported that approximately 60 percent of all errors in system
development projects originate during the phase of requirements engineering.

Requirements engineering directs attention on aspects of analysis and design and does not address the
full development life cycle of model-driven software engineering. These methods can cover the needs
of a wide variety of applications in both large and small projects. Our focus here addresses requirements
elicitation and requirements analysis. A definition for requirements has not been formally agreed to by
software engineering researchers, although a definition described by Hull, Jackson and Dick (2011, p. 6)
includes the ideas of statements which identify characteristics that are unambiguous, and are necessary
for system acceptance. Requirements engineering involves developing documents to address the prob-
lems as described by users. The analyst and user establish a set of conventions to describe and discuss
the problem domain and scope of the system. Analysis can be seen as the methods used to study the
concepts, procedures and activities in a problem domain. Each problem domain in a certain modeling
situation is dependent on the contexts and goals in the system environment. The first steps of analysis
for a MDSE project is carried out in order to increase understanding of the problem domain.

When performing requirements engineering of planned MDSE systems, the requirements documents
become the grounding for the entire system. It is important to continually update the set of descriptions
which cover the system requirements and the models which generate implementation outcomes. The
latest approaches in requirements documentation methods and communication tools, for the purpose of
model synthesis, are discussed and explored in this chapter. The philosophy underlying requirements
engineering for MDSE should be that gathering information for modeling is appropriate for all domain
challenges, and will always deliver some value.

A subtopic of requirements engineering is the importance of analyzing legacy systems for the
purposes of requirements documentation. Older legacy systems often need to be interwoven together
with the overall system requirements. Model-driven software engineering creates functionality by the
transformation of models based on deep knowledge of existing and available systems and tools. The
models are derived from requirements of the problem space describing expected inputs and outputs of

20 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/the-human-role-in-model-synthesis/192873

Related Content

Software-Based Self-Test of Embedded Microprocessors
Paolo Bernardi, Michelangelo Grosso, Ernesto Sánchezand Matteo Sonza Reorda (2011). Design and Test

Technology for Dependable Systems-on-Chip (pp. 338-359).

www.irma-international.org/chapter/software-based-self-test-embedded/51408

Girls and Computers - Yes We Can!: A Case Study on Improving Female Computer Confidence

and Decreasing Gender Inequity in Computer Science with an Informal, Female Learning

Community
Misook Heoand L. Monique Spradley-Myrick (2012). Computer Engineering: Concepts, Methodologies,

Tools and Applications (pp. 1126-1143).

www.irma-international.org/chapter/girls-computers-yes-can/62502

Measuring the Progress of a System Development
Marta (Plaska) Olszewskaand Marina Waldén (2012). Dependability and Computer Engineering: Concepts

for Software-Intensive Systems (pp. 417-441).

www.irma-international.org/chapter/measuring-progress-system-development/55337

System-Level Design of NoC-Based Dependable Embedded Systems
Mihkel Tagel, Peeter Ellerveeand Gert Jervan (2011). Design and Test Technology for Dependable

Systems-on-Chip (pp. 1-36).

www.irma-international.org/chapter/system-level-design-noc-based/51394

The BioDynaMo Project: Experience Report
Roman Bauer, Lukas Breitwieser, Alberto Di Meglio, Leonard Johard, Marcus Kaiser, Marco Manca,

Manuel Mazzara, Fons Rademakers, Max Talanovand Alexander Dmitrievich Tchitchigin (2021). Research

Anthology on Recent Trends, Tools, and Implications of Computer Programming (pp. 1785-1791).

www.irma-international.org/chapter/the-biodynamo-project/261101

http://www.igi-global.com/chapter/the-human-role-in-model-synthesis/192873
http://www.irma-international.org/chapter/software-based-self-test-embedded/51408
http://www.irma-international.org/chapter/girls-computers-yes-can/62502
http://www.irma-international.org/chapter/measuring-progress-system-development/55337
http://www.irma-international.org/chapter/system-level-design-noc-based/51394
http://www.irma-international.org/chapter/the-biodynamo-project/261101

