
15

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

DOI: 10.4018/978-1-5225-3923-0.ch002

ABSTRACT

This chapter describes a pragmatic approach to using open source and free software tools as valuable
resources to affect learning of software industry practices using iterative and incremental development
methods. The authors discuss how the above resources are used in teaching undergraduate Software
Engineering (SE) courses. More specifically, they illustrate iterative and incremental development,
documenting software requirements, version control and source code management, coding standards
compliance, design visualization, software testing, software metrics, release deliverables, software en-
gineering ethics, and professional practices. The authors also present how they positioned the activities
of this course to qualify it for writing intensive designation. End of semester course evaluations and
anecdotal evidence indicate that the proposed approach is effective in educating students in software
industry practices.

INTRODUCTION

Software Engineering (SE) courses are some of the most challenging ones to teach in Computer Science
(CS) curricula. Not only do students need to learn basic concepts, principles, and methods, but also
master industry practices and tools in these courses. Lecture-based approaches to espousing software
engineering principles hardly engage students’ attention (Nandigam, Gudivada, & Hamou-Lhadj, 2008).
Students often view software engineering principles as mere academic concepts and graduate without
a clear understanding of how these principles can be used in practice. By the time students take their
first SE course, it is quite unlikely that they have written programs that are more than 500 lines long.

Learning Software Industry
Practices With Open Source

and Free Software Tools
Jagadeesh Nandigam

Grand Valley State University, USA

Venkat N. Gudivada
Marshall University, USA

16

Learning Software Industry Practices With Open Source and Free Software

It is also equally unlikely they had an opportunity to inspect large programs (> a few thousand lines of
code) written by others.

One practice that seems to pervade across universities to bringing software engineering professional
practices into the classroom is using a semester-long term project. In this project, students are expected
to demonstrate their ability to apply software engineering practices and tools in solving a real-world
problem in a team environment. However, there is no established approach to accomplishing the above
goal due to various factors discussed below.

Selecting a right project with appropriate scope is in itself a challenge. In our experience with teaching
SE courses, asking student teams to self-select a project rarely produces successful outcomes. Students
typically overestimate or underestimate project scope and complexity. Overestimation leads to selecting
a trivial project and embellishing it with superficial complexity. Underestimation results in switching
to a trivial project halfway through the semester. In either case, the project scope and complexity are
insufficient for students to fully experience professional software development practices.

The overarching goal of this chapter is to present our approach to teaching software engineering
industry practices and tools in the backdrop of SE concepts, theory, methods, and principles. Using suit-
able software tools and team projects, we promote conceptual understanding and practical skills of the
following topics: role of tools in the software development life cycle; iterative and incremental develop-
ment as a means for timely project completion; requirements elicitation and specification; source code
management with version control; importance of adhering to coding standards; design visualization;
verification and validation through software testing; measuring and using software metrics as a means
for improving software quality; software release management; ethics and professional practice; and
writing as a means to learning. We also discuss how Open Source code bases can be used in achieving
the above learning goals.

SOFTWARE ENGINEERING COURSE

Our undergraduate SE course includes a semester-long (about 14 weeks) software development project
to provide students hands-on experience with processes, methods, techniques, and tools of software
development. The course first provides the necessary theoretical foundation for a broad range of top-
ics – software engineering process models, project management, software requirements elicitation and
specification, use case modeling, UML, object-oriented analysis and design, design patterns, test-driven
development, version control, system building, software testing, mock object frameworks, software
maintenance, software internationalization, SE ethics, and writing skills. Though the topics are quite
a few, very focused and conceptually oriented lectures make this task possible. Students gain practical
aspects of these topics by working on a realistic project in a team environment.

Students begin the course by writing a short formal paper on a SE ethics topic. The semester-long
project involves development of a software product using an iterative and incremental development
model. Students use Eclipse IDE (n.d.), and several free and open source tools and plugins available
for the Eclipse IDE. The product is delivered incrementally in three releases with each release taking
roughly 4 weeks of effort. The course also includes a midterm, a final exam, and several quizzes as part
of formative and summative assessments. The weight distribution of various components in the course
is: term paper (10%), ethics writing assignment (5%), term project (30%), midterm exam (20%), final
exam (25%), and quizzes (10%).

16 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/learning-software-industry-practices-with-open-

source-and-free-software-tools/192871

Related Content

Optimal Crashing and Buffering of Stochastic Serial Projects
Dan Trietsch (2012). Computer Engineering: Concepts, Methodologies, Tools and Applications (pp. 484-

495).

www.irma-international.org/chapter/optimal-crashing-buffering-stochastic-serial/62460

Fuzzy Logic for Non-smooth Dynamical Systems
Kamyar Mehran, Bashar Zahawiand Damian Giaouris (2011). Kansei Engineering and Soft Computing:

Theory and Practice (pp. 147-168).

www.irma-international.org/chapter/fuzzy-logic-non-smooth-dynamical/46396

Software Development Methodology for Cloud Computing and Its Impact
Chhabi Rani Panigrahi, Rajib Malland Bibudhendu Pati (2021). Research Anthology on Recent Trends,

Tools, and Implications of Computer Programming (pp. 151-172).

www.irma-international.org/chapter/software-development-methodology-for-cloud-computing-and-its-impact/261026

Optimum Design of Reinforced Concrete Retaining Walls
Rasim Temürand Gebrail Bekda (2018). Handbook of Research on Predictive Modeling and Optimization

Methods in Science and Engineering (pp. 360-378).

www.irma-international.org/chapter/optimum-design-of-reinforced-concrete-retaining-walls/206757

Secure Key Establishment in Wireless Sensor Networks
Suman Bala, Gaurav Sharmaand Anil K. Verma (2018). Cyber Security and Threats: Concepts,

Methodologies, Tools, and Applications (pp. 883-908).

www.irma-international.org/chapter/secure-key-establishment-in-wireless-sensor-networks/203539

http://www.igi-global.com/chapter/learning-software-industry-practices-with-open-source-and-free-software-tools/192871
http://www.igi-global.com/chapter/learning-software-industry-practices-with-open-source-and-free-software-tools/192871
http://www.irma-international.org/chapter/optimal-crashing-buffering-stochastic-serial/62460
http://www.irma-international.org/chapter/fuzzy-logic-non-smooth-dynamical/46396
http://www.irma-international.org/chapter/software-development-methodology-for-cloud-computing-and-its-impact/261026
http://www.irma-international.org/chapter/optimum-design-of-reinforced-concrete-retaining-walls/206757
http://www.irma-international.org/chapter/secure-key-establishment-in-wireless-sensor-networks/203539

