Chapter 13 The Use of Videos in the Training of Math Teachers: Formative Assessment in Math Teaching and Learning

Giorgio Bolondi Alma Mater Studiorum Università di Bologna, Italy

Federica Ferretti Alma Mater Studiorum Università di Bologna, Italy

Alessandro Gimigliano Alma Mater Studiorum Università di Bologna, Italy

Stefania Lovece Alma Mater Studiorum Università di Bologna, Italy

Ira Vannini Alma Mater Studiorum Università di Bologna, Italy

ABSTRACT

The purpose of this chapter is to present a systematic observational research on the math teachers' assessment practices in the classroom. This research is a specific phase of an international project (FAMT&L - Comenius Multilateral Project) and it is aimed to promote the use of formative assessment in teaching mathematics to students aged from 11 to 16. The observational study is carried out by a plan of systematic observations of teachers' behaviour in the classroom with the help of video recording. Thanks to a specific tool of video analysis (a structured grid), developed using indications from international literature and experiences of teacher training in the five Partner countries involved (Italy, France, Holland, Switzerland and Cyprus), we managed to gather many different indicators on good and bad practices for the formative assessment of mathematics teachers. Furthermore, the analysed video will be used in in-service teacher training courses in order to promote a correct use of formative assessment and to improve achievements in learning mathematics.

DOI: 10.4018/978-1-5225-3832-5.ch013

FRAMEWORK ON FORMATIVE ASSESSMENT IN MATHEMATICS TEACHING AND LEARNING¹

Assessment in classroom has always been a key tool in order to promote, or to hinder, democratic values at school. An education system that does promote quality and equity for the learning achievements of its students, uses assessment as a key element to qualify the action of teaching in a democratic way, both at the beginning and during the process of teaching-learning; moreover it will consider the differences among the students and their possible learning difficulties as opportunities to make the teaching actions flexible in order to reach goals of quality for all (Vertecchi, 1976; Grandi, 1977; Weeden, Winter, & Broadfoot, 2002).

As we can read in Crahay and Issaieva (2013), it has to be a kind of assessment which adheres to a principle of equality of achievements (Bloom, 1968; Black & Wiliam, 1998; Guskey, 2005), hence to an idea of "fairness" in teaching, by offering more to whom possesses less.

This need of fairness in achieving the competences for citizenship (OECD, 2012; 2015; Eurydice, 2012) is more evident in every education system when considering basic competences and at high and junior high school level, before the completion of the compulsory cycle of studies. In particular, relevant problems appear in the field of math teaching, with important gaps in the conduct of the specific teaching-learning processes.

ASSESSING MATHS LEARNING: A DIDACTIC AND A SOCIAL PROBLEM

In Italian school practice, the assessment of Mathematical learning has been and in fact is yet traditionally oriented to a summative function, performed by means of written open tests (only recently the use of multiple choice tests is increasing) and oral-at-the-blackboard interrogations. Hence, is focuses primarily on students' *products* (results of calculations, presentations of proofs, ...). On the other hand, formative assessment, as it will be detailed below, requires being careful mainly of students' *processes*. In this sense, we may say that in Italy math teachers have no formative assessment tradition, and in fact there is no systematic presence of it in pre-service training, and it is sporadic also in in-service training.

It must be noted that assessment, in math, has a crucial role in determining students' beliefs and attitudes, which in turn influence students' achievements (Di Martino & Zan, 2002; Bolondi & Ferretti, 2015). Therefore recovering a formative dimension for assessment is a strategic goal for maths teacher and it may became a fundamental tool for switching all the didactic focus from the contents (the mathematical objects) to the actors (the students).

Maths activity in the classroom involves many components: discourses, technologies, visual representations; it is performed through explorations, work on specific tasks, explanations. Formative assessment takes place in this complexity of actions. Then it is important to train teachers to observe significant elements of this complexity, and for this purpose video analysis is a natural tool.

As examples of situations that are worthwhile to analyse, we may list:

- Administration of a written task, with discussion about it (the content, the form);
- Administration of a written task, with explanation of the objectives of the activity;
- Administration of a written task with the explicitness of the evaluation criteria;
- Individual interview with the use of tools of observation and interaction;

16 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/the-use-of-videos-in-the-training-of-mathteachers/190104

Related Content

Mathematics Gaming in Early Childhood: Describing Teacher Moves for Effective and Appropriate Implementation

Alejandra Salinasand Chu Ly (2015). *Cases on Technology Integration in Mathematics Education (pp. 351-364).*

www.irma-international.org/chapter/mathematics-gaming-in-early-childhood/119152

Active Learning, Mentoring, and Mobile Technology: Meeting Needs across Levels in One Place

Dianna L. Newman, Jessica M. Lamendola, Meghan Morris Deyoeand Kenneth A. Connor (2015). *STEM Education: Concepts, Methodologies, Tools, and Applications (pp. 760-778).* www.irma-international.org/chapter/active-learning-mentoring-and-mobile-technology/121872

Motivating Inquiry-Based Learning Through a Combination of Physical and Virtual Computer-Based Laboratory Experiments in High School Science

Niwat Srisawasdi (2016). Improving K-12 STEM Education Outcomes through Technological Integration (pp. 108-134).

www.irma-international.org/chapter/motivating-inquiry-based-learning-through-a-combination-of-physical-and-virtualcomputer-based-laboratory-experiments-in-high-school-science/141184

Integration of Educational Robotics to STEM Education

Atajan Rovshenov, Mert Büyükdedeand Veli Acar (2022). *Handbook of Research on Integrating ICTs in STEAM Education (pp. 219-238).* www.irma-international.org/chapter/integration-of-educational-robotics-to-stem-education/304849

Students' Kinaesthetic Interactions with a Touch-Enabled Virtual Mapping Tool

Theodosia Prodromou, Maria Meletiou-Mavrotherisand Andreas O. Kyriakides (2015). *Integrating Touch-Enabled and Mobile Devices into Contemporary Mathematics Education (pp. 1-23).* www.irma-international.org/chapter/students-kinaesthetic-interactions-with-a-touch-enabled-virtual-mapping-tool/133312