
709

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 30

DOI: 10.4018/978-1-5225-3422-8.ch030

ABSTRACT

This chapter emphasizes the importance of employing Aspect-Oriented Programming (AOP) on software
development, especially in software engineering. Some advantages in the development of RIAs by using
AOP are Maintainability, Extensibility, and Reusability. This chapter presents a review of several success
stories of AOP implementation in real world development projects and discusses the lessons learned in
these projects. The works analyzed in the state-of-the-art are classified by Web development, Usability
Engineering, and other related perspectives. Finally, the chapter also addresses AOP support between
JavaScript-based RIA frameworks and non-JavaScript-based RIA frameworks providing either native
or third-party AOP facilities. Some code snippets depicting the use of these facilities for implementing
AOP concepts are also presented.

1. INTRODUCTION

Nowadays, AOP (Aspect-Oriented Programming) is one of the concepts on computer programming
primarily used in research and industry. Its use is an evolutionary way of developing software that
improves upon OOP (Object-Oriented Programming), in the same way that OOP improved upon pro-
cedural programming. OOP introduced the concepts of encapsulation, inheritance, and polymorphism
for creating a hierarchy of objects that model a common set of behaviors. Although OOP has become

Aspect-Oriented
Programming (AOP) Support

on RIAs Development
Giner Alor-Hernández

Instituto Tecnológico de Orizaba, Mexico

Viviana Yarel Rosales-Morales
Instituto Tecnológico de Orizaba, Mexico

Luis Omar Colombo-Mendoza
Instituto Tecnológico de Orizaba, Mexico

710

Aspect-Oriented Programming (AOP) Support on RIAs Development

relevant, it has failed in handling common behaviors that extend across unrelated objects. This means
that OOP enhances vertical relationships but not horizontal relationships. As an example, logging code
is often horizontally scattered across object hierarchies, but it has nothing to do with core functions of
the objects scattered across. This situation occurs with other types of code, such as security and excep-
tion handling AOP provides a solution for abstracting crosscutting code that spans object hierarchies
without functional relevance to the code it spans. AOP is a tool that enables to abstract the crosscutting
code into a separate module, known as an aspect, rather than embedding crosscutting code in classes
and then dynamically applying the code where it is needed. The application of the crosscutting code is
achieved by defining specific places, known as pointcuts, in the object model where the crosscutting
code should be applied (Ekabua, 2012). Depending on the intended AOP framework, crosscutting code
is injected at the specified pointcuts at runtime or compile-time. Ideally, AOP introduces a very power-
ful concept, which allows the introduction of new functionalities into objects without the objects need-
ing to have any knowledge of that introduction (Holmes, 2012). Defects and deterioration of software
are caused by changes in source code, and a lot of these changes cannot be avoided; however, they can
be minimized. In most cases, when changes are made to software, the entire program is reengineered
(Fayad & Adam, 2001).

Changes are inseparable part of software evolution. Changes take place in the process of development
as well as during software maintenance. Huge costs and low speed of implementation are characteristic
to change implementation. Often, change implementation implies a redesign of the whole application.
The necessity of improving the software adaptability is fairly evident. Changes are usually specified as
alterations of the base application behavior. Sometimes, it is needed to revert a change, which would be
best done if it were expressed in a pluggable way. Another benefit of change pluggability is apparent if
the change has to be reapplied. However, it is impossible to have a change implemented to fit any context,
but it would be sufficiently helpful if a change could be extracted and applied to another version of the
same base application. Such a pluggability can be achieved by representing changes as aspects (Dolog,
Vrani´c & Bielikov´a, 2001). Some changes appear as real crosscutting concerns in the sense of affect-
ing many places in the code, which is yet another reason for expressing them as aspects. This would be
especially useful in the customization of web applications.

Typically, a general Web application is adapted to a certain context by a series of changes. With the
arrival of a new version of the base application, all these changes have to be applied to it. In many oc-
casions, the difference between the new and the old application does not affect the structure of changes.

A successful application of AOP requires a structured base application. Well-structured Web applica-
tions are usually based on the MVC (Model-View-Controller) pattern with three distinguishable layers:
model layer, presentation layer, and persistence layer (Bebjak, Vranic & Dolog, 2007).

AOP can be implemented in RIAs. This kind of programming is capable of providing many benefits
to RIAs, such as adding new levels of security and functionality without modifying the original code
application. As it was mentioned above the advantages of applying AOP development of RIAs are varied
and very important. Some of the most important advantages in the development of RIAs by using AOP
are mentioned below:

• Maintainability is very important for RIAs development, since it enables to make changes as effec-
tively and efficiently as it is possible. Moreover, the AOP provides a high level for maintainability.

16 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/aspect-oriented-programming-aop-support-on-

rias-development/188230

Related Content

Factors Affecting Team Motivation: A Survey of Finnish Software Engineers
Ayse Tosun Misirli, June Verner, Jouni Markkulaand Markku Oivo (2015). International Journal of

Information System Modeling and Design (pp. 1-26).

www.irma-international.org/article/factors-affecting-team-motivation/126954

Toward a Statistical Characterization of Computer Daihinmin
Seiya Okubo, Yuta Kado, Yamato Takeuchi, Mitsuo Wakatsukiand Tetsuro Nishino (2019). International

Journal of Software Innovation (pp. 63-79).

www.irma-international.org/article/toward-a-statistical-characterization-of-computer-daihinmin/217393

Enriched Conceptualization of Subtyping
Terry Halpin (2009). Innovations in Information Systems Modeling: Methods and Best Practices (pp. 1-16).

www.irma-international.org/chapter/enriched-conceptualization-subtyping/23781

Knowledge Management
Arshad Siddiqi (2013). Software Development Techniques for Constructive Information Systems Design

(pp. 332-344).

www.irma-international.org/chapter/knowledge-management/75755

CPS Architecture
 (2015). Challenges, Opportunities, and Dimensions of Cyber-Physical Systems (pp. 19-37).

www.irma-international.org/chapter/cps-architecture/121248

http://www.igi-global.com/chapter/aspect-oriented-programming-aop-support-on-rias-development/188230
http://www.igi-global.com/chapter/aspect-oriented-programming-aop-support-on-rias-development/188230
http://www.irma-international.org/article/factors-affecting-team-motivation/126954
http://www.irma-international.org/article/toward-a-statistical-characterization-of-computer-daihinmin/217393
http://www.irma-international.org/chapter/enriched-conceptualization-subtyping/23781
http://www.irma-international.org/chapter/knowledge-management/75755
http://www.irma-international.org/chapter/cps-architecture/121248

