
686

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 29

DOI: 10.4018/978-1-5225-3422-8.ch029

ABSTRACT

Current MDD methodologies are complex to use and require doing lots of models and configurations.
Usually after all that effort only some part of the application source code can be automatically created.
It would be desirable to have a more simple technique, but powerful enough for automatically creating
a fully functional application. This works introduces a component based model driven development ap-
proach where a set of user interface components will be configured to define system behavior. Component
configuration will be direct, simple and supported by a modeling tool which also includes automatic
transformations for reducing the modeling task. The methodology requires the designer to build only
two models: a class diagram, representing the data model of the application and a component diagram
defining the user interface and the system navigation. Both components are based on UML extended
with stereotypes and tagged values allowing configuring the system behavior.

INTRODUCTION

Application modeling is underestimated by the software industry. Many times software development
companies, especially small and medium size, don’t give enough importance to modeling and consider it
a waste of time. In other instances modeling is only used in early stages of the development process for
making a first definition of the problem and getting the requirements. Most of the models used in early
stages are not updated with the changes that arise in the following stages of the process, so they quickly
became obsolete. For that reason, the idea of giving models more importance appears. Models are used
for the automatic creation of the application source code, or at least part of it. “Software development
automation consists of starting from a high level (or early) representation of the desired software features

Component Based Model
Driven Development:

An Approach for Creating Mobile Web
Applications From Design Models

Pablo Martin Vera
National University of La Matanza, Argentina

687

Component Based Model Driven Development
﻿

and deriving a running application out of it, possibly through a set of intermediate steps to enable some
degree of user interaction with the generation process.” (Brambilla, Cabot & Wimmer 2012).

Developing Software by Making Models and automatically creating source code is a tendency started
several years ago. These techniques can be found with several names MDD (Model Driven Development),
MDA (Model Driven Architecture), MDSE (Model Driven Software Engineering), MDE (Model Driven
Engineering). All these techniques have something in common, they use models and transformations to
generate source code. A transformation is a process that takes as input a model and creates a target model
or source code. For example OMG MDA Approach (OMG 2003a; Kleppe, Warmer & Bast 2003) uses
different kinds of models with different types of abstraction levels, starting from Platform Independent
Models (PIM) to Platform Specific Models (PSM). “PIM allows visual representation of the model using
a high level of abstraction. Details of the environmental models can be expressed clearly and precisely
in UML as it does not use any particular implementation formalism … PSM is developed by mapping
a PIM to a particular computer platform and a specific programming language” (Papajorgji, Beck &
Braga 2004).

From PIM to PSM there are automatic or semi-automatic transformations. The final goal of these
techniques is to automate the creation of the application source code, making designers focusing on the
models rather than in the coding process. But most of the existing techniques are difficult to use and
require to do a really complex process detailing models and configuring transformations in order to
obtain useful code, and most of them only can create part of that code.

By taking the premise of automatic code creation and also making easier the modeling process, a new
methodology was created. This methodology uses predefined and configurable user interface components
to define system behavior. The use of components in the software development process is a very well
establish technique by the software industry (Heineman & Councill 2001). Components are pre-defined
pieces of software with a very well establish purpose. “Component-based software development stands
for software construction by assembly of prefabricated, configurable, and independently evolving build-
ing blocks” (Keller Reinhard, 1998)

Components are excellent for re-use and they are reliable because once they were tested they can
be re-use without modification. “Component software benefits include reusability and interoperability,
among other” (Adler, 1995). Most of modern programming frameworks include pre-defined components
for easiness the development process. For example login component or some UI components like grids,
carrousels, etc.

This article is organized as following: first the methodology is introduced justifying why it is mainly
focused on mobile web applications. Then Data and User interface models are explained with all con-
figuration capabilities. After that, the modeling of complex applications is shown including views for
different roles and complex database design. After describing all capabilities of the methodology, the
support tool is shown including the transformation process and the resulting application source code.
Finally related works, conclusions and future work are discussed.

Component Based Model Driven Development (CBMDD)

CBMDD is a modeling methodology for designing applications and generating the source code using
extended Unified Modeling Language (UML) Models (OMG 2010). “The Unified Modeling Language is
a language for specifying, constructing, visualizing, and documenting the artifacts of a software-intensive
system.” (Booch, Rumbaugh & Jacobson 1999).

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/component-based-model-driven-

development/188229

Related Content

Activity-Oriented Computing
João Pedro Sousa, Bradley Schmerl, Peter Steenkisteand David Garlan (2009). Software Applications:

Concepts, Methodologies, Tools, and Applications (pp. 3215-3241).

www.irma-international.org/chapter/activity-oriented-computing/29558

Factors Affecting Team Motivation: A Survey of Finnish Software Engineers
Ayse Tosun Misirli, June Verner, Jouni Markkulaand Markku Oivo (2015). International Journal of

Information System Modeling and Design (pp. 1-26).

www.irma-international.org/article/factors-affecting-team-motivation/126954

Supporting Ontology-Based Semantic Annotation of Business Processes with Automated

Suggestions
Chiara Di Francescomarinoand Paolo Tonella (2010). International Journal of Information System Modeling

and Design (pp. 59-84).

www.irma-international.org/article/supporting-ontology-based-semantic-annotation/43609

Object-Oriented Cognitive Complexity Measures: An Analysis
Sanjay Misraand Adewole Adewumi (2015). Handbook of Research on Innovations in Systems and

Software Engineering (pp. 150-170).

www.irma-international.org/chapter/object-oriented-cognitive-complexity-measures/117923

Optimized and Distributed Variant Logic for Model-Driven Applications
Jon Davisand Elizabeth Chang (2015). Handbook of Research on Innovations in Systems and Software

Engineering (pp. 428-478).

www.irma-international.org/chapter/optimized-and-distributed-variant-logic-for-model-driven-applications/117936

http://www.igi-global.com/chapter/component-based-model-driven-development/188229
http://www.igi-global.com/chapter/component-based-model-driven-development/188229
http://www.irma-international.org/chapter/activity-oriented-computing/29558
http://www.irma-international.org/article/factors-affecting-team-motivation/126954
http://www.irma-international.org/article/supporting-ontology-based-semantic-annotation/43609
http://www.irma-international.org/chapter/object-oriented-cognitive-complexity-measures/117923
http://www.irma-international.org/chapter/optimized-and-distributed-variant-logic-for-model-driven-applications/117936

