
530

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 22

DOI: 10.4018/978-1-5225-3422-8.ch022

ABSTRACT

The success of any software application heavily depends on the success of its User Interface (UI) design.
This is since users communicate with those applications through their UIs and they will build good or
bad impressions based on how such UIs help them using the software. UI design evolves through the
years to be more platform and even code independent. In addition, the design of an application user
interface consumes a significant amount of time and resources. It is expected that not only the same UI
design should be relatively easy to transfer from one platform to another, but even from one programming
language release to another or even from one programming language to another. In this chapter, we
conducted a thorough investigation to describe how UI design evolved through the years to be indepen-
dent from the code, or any other environment element (e.g. operating system, browser, database, etc.).

INTRODUCTION

Graphical User Interface (GUI) is a recent term for an area that is used to be called Human Computer
Interaction (HCI). While both terms are not identical or synonymous, they refer to the same area or
subject on how to design the interfaces of software applications through which users interact with those
underlying software. On the other side, Application Peripheral Interfaces (APIs) indicate low level in-
terfaces between software applications and other applications, operating systems, databases, hardware
components, etc. The commonality between GUI and API (in addition to the last word; Interface) is
that both include how the subject software is going to interact with its environment (users; GUI, other
applications; API).

The design of the GUI is considered very important and critical to any software. A very successful
software, from the inside, may fail by large if its GUI fails to attract users to use and understand features

User Interface Design in
Isolation from Underlying

Code and Environment
Izzat Alsmadi

University of Texas A&M, USA

531

User Interface Design in Isolation from Underlying Code and Environment
﻿

that exist in this software. Alternatively, a very attractive GUI may boost, a shallow software, from the
inside to be more successful. You may see many applications or websites in the market that offer the same
features or services. Why certain ones are more popular?! Their GUI can be the first thing to think of.

The evaluation of GUIs is also unconventional and we should usually combine some formal verifica-
tion or testing techniques with some informal techniques. In other words, while the automatic testing of
user interfaces is important and continuously growing (Alsmadi & Magel 2007), there are some impor-
tant parts of the user interface that they should manually be validated by users or testers. In this context
validation is the term usually used to indicate those parts of the requirements, unlike verification, that
need to be evaluated and tested through the users and not by formal methods, mathematical proofs or
test automation tools.

Test automation for user interfaces is very popular and convenient. Testing application interfaces usu-
ally consumes a significant amount of project time and resources. The percentage of automating testing
activities can vary from one software product to another and from one software module/component to
another. In general, it is desirable to achieve 100% or high percentage coverage in user interface testing
(Alsmadi, 2014). However, there are many obstacles toward achieving such 100% coverage. There are
some user interface aspects that need human or manual validation for approvals. For example, the possible
appropriateness of GUI components’ layouts or coloring can be very hard for tools to automatically verify
without human visual eyes assistance. In addition, the continuous evolution of graphical user interface
components creates a challenge on test automation tools. In particular, the majority of those tools use
some reverse engineering methods or libraries (e.g. Reflection in Java) to read all GUI components at
run time and be able to interact with those components (Amalfitano et al., 2012; Banerjee et al., 2013).
Those reverse engineering libraries may not have methods that can extract information from new GUI
components that they are not developed to normally handle or serialize.

In this chapter, we will focus on evaluating how the design of user interfaces evolve to be more
independent. We will focus on two aspects of this independency: Platform independent, and UI design
patterns and principles.

PLATFORM-INDEPENDENT UI DESIGN

The term “platform-independent” or “cross-platforms” have been very important marketing or selling
themes for many software applications to show signs of robustness and flexibility. For example, Java, in
comparison with C# considers its main distinguished different is being platform-independent where C#
can only run within Windows environments whereas Java can run on Windows and many other environ-
ments (e.g. MAC, Unix, etc.). User Interface design contributes significantly to making one software
application platform-independent or not. In some cases, UI can be platform-independent while optimized
to work on one specific platform.

UI interfaces exist in different platform versions or forms. The same application can have a web
browser version, Desktop version, console or terminal version and mobile version. There are two main
important factors that justify the need to have a unified UI for the same software application on the dif-
ferent platforms:

1. 	 For users, it will be easier to deal with the different versions or forms of the same application on
the different platforms if those forms are unified. Their learning curve can be faster and they can

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/user-interface-design-in-isolation-from-

underlying-code-and-environment/188222

Related Content

Performance-Aware Approach for Software Risk Management Using Random Forest Algorithm
Alankrita Aggarwal, Kanwalvir Singh Dhindsaand P. K. Suri (2021). International Journal of Software

Innovation (pp. 12-19).

www.irma-international.org/article/performance-aware-approach-for-software-risk-management-using-random-forest-

algorithm/266279

Adding Alternative Access Paths to Abstract Data Types
Xavier Franchand Jordi Marco (2002). Successful Software Reengineering (pp. 256-267).

www.irma-international.org/chapter/adding-alternative-access-paths-abstract/29982

Restful Web Service and Web-Based Data Visualization for Environmental Monitoring
Sungchul Lee, Ju-Yeon Joand Yoohwan Kim (2015). International Journal of Software Innovation (pp. 75-

94).

www.irma-international.org/article/restful-web-service-and-web-based-data-visualization-for-environmental-

monitoring/121549

CbSSDF: A Two-Layer Conceptual Graph Approach to Web Services Description and

Composition – A Scenario Based Solution Analysis and Comparison with OWL-S
Xiaofeng Du, Malcolm Munroand William Song (2013). Frameworks for Developing Efficient Information

Systems: Models, Theory, and Practice (pp. 123-145).

www.irma-international.org/chapter/cbssdf-two-layer-conceptual-graph/76621

Model-Based Testing of Embedded Systems Exemplified for the Automotive Domain
Justyna Zanderand Ina Schieferdecker (2010). Behavioral Modeling for Embedded Systems and

Technologies: Applications for Design and Implementation (pp. 377-413).

www.irma-international.org/chapter/model-based-testing-embedded-systems/36350

http://www.igi-global.com/chapter/user-interface-design-in-isolation-from-underlying-code-and-environment/188222
http://www.igi-global.com/chapter/user-interface-design-in-isolation-from-underlying-code-and-environment/188222
http://www.irma-international.org/article/performance-aware-approach-for-software-risk-management-using-random-forest-algorithm/266279
http://www.irma-international.org/article/performance-aware-approach-for-software-risk-management-using-random-forest-algorithm/266279
http://www.irma-international.org/chapter/adding-alternative-access-paths-abstract/29982
http://www.irma-international.org/article/restful-web-service-and-web-based-data-visualization-for-environmental-monitoring/121549
http://www.irma-international.org/article/restful-web-service-and-web-based-data-visualization-for-environmental-monitoring/121549
http://www.irma-international.org/chapter/cbssdf-two-layer-conceptual-graph/76621
http://www.irma-international.org/chapter/model-based-testing-embedded-systems/36350

