
 W

7995

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Web Technologies

DOI: 10.4018/978-1-5225-2255-3.ch695

An Efficient and Effective Index Structure 
for Query Evaluation in Search Engines

INTRODUCTION

Indexing the Web for fast keyword search is among 
the most challenging applications for scalable 
data management. In the past several decades, 
different indexing methods have been developed 
to speed up text search, such as inverted files, 
signature files and signature trees for indexing 
texts (Anh and Moffat, 2005; Chen et al., 2004; 
Chen et al. 2006; Faloutsos, 1985; Faloutsos et al., 
1988); and suffix trees and tries (Knuth, 1975) for 
string matching. Especially, different variants of 
inverted files have been used by the Web search 
engines to find pages satisfying a query (Arasu, 
2001; Lemple et al., 2003).

A text database can be roughly viewed as a 
collection of documents and each document is 
stored as a list of words. Over the documents, 
there are two kinds of Boolean queries, that is, 
queries that can be constructed from query terms 
by conjunction (∧) or disjunction (∨). A docu-
ment D is an answer to a conjunctive query w1 
∧ w2 ∧ … ∧ wk if it contains every wi for 1 ≤ i ≤ 
k while D is an answer to a disjunctive query w1 
∨ w2 ∨ … ∨ wl if it contains any wi for 1 ≤ i ≤ 
l. Conjunction and disjunction can be nested to 
arbitrary depth, but can always be transformed to 
a conjunctive normal form:

(w11. … ∨ w
l1 1

.) … ∧ (wk1. … ∨ w
klk

.)	

In this chapter, we discuss a new method to 
evaluate both conjunctive and disjunctive queries 
by decomposing an inverted list into a collection 
of disjoint sub-lists. The decomposition is based 

on the construction of a trie structure T over docu-
ments and then associating each document word 
with an interval sequence generated by labeling 
T by using a kind of tree encoding.

With this method, we can improve the ef-
ficiency of traditional methods by an order of 
magnitude or more.

BACKGROUND

In order to efficiently evaluate such queries, 
indexes need to be established. It is well known 
that English texts typically contain many different 
variants of basic words, by using variant word 
endings such as ‘ing’, ‘ed’, ‘ses’, and ‘ation’. All 
the variants of a word should be regarded as a 
match and therefore it is efficient for an index only 
include these basic words, or say, stems. Different 
algorithms have been developed to extract stems 
from documents. Among them, the algorithm 
proposed by Lovins (1968) is widely used.

By the signature file, a word is hashed to a 
bit string (called a signature) and all the words’ 
signatures of a document are superimposed (bit-
wise OR operation) into a document signature. 
When a query arrives, its signature will be created 
using the same hash function and the document 
signatures are scanned and many nonqualifying 
documents are discarded. The rest are either 
checked (so that the ‘false drops’ are removed) 
or they are returned to the user as they are. The 
main disadvantage of this method is the false drop 
(Kitagawa et al., 1997), which needs extra time 
to check. The signature file is greatly improved 
by the so-called signature tree (Chen et al. 2006), 

Yangjun Chen
University of Winnipeg, Canada



An Efficient and Effective Index Structure for Query Evaluation in Search Engines

7996

by which a set of signatures is organized into a 
binary tree structure and a sequential search of 
signatures is replaced with a search of binary 
trees. However, signature-based methods can be 
used only for evaluating conjunctive queries. For 
disjunctive queries, they are not efficient.

As pointed out by many researchers (Anh et 
al., 2005; Ao et al., 2011; Zobel et al., 2006), the 
inverted file is a more competitive indexing method 
than signature-based approaches. It is extensively 
used by different web search engines due to its 
efficiency and simplicity. Structurally, it contains 
two parts: a search structure or vocabulary, con-
taining all the distinct words to be indexed, and 
a set of inverted lists with each constructed for a 
distinct word w, storing the identifiers of all those 
documents containing w. Queries are evaluated by 
fetching the inverted lists for the query terms, and 
then intersecting them for conjunctive queries, or 
merging them (by a set union operation) for dis-
junctive queries. According to (Zobel et al., 1998), 
the inverted file is superior to the signature file 
in almost every respect, including functionality, 
query time, and space overhead.

Since it was first proposed in mid-1960s, the 
inverted file has been adopted in information 
retrieval, database systems, distributed systems 
(Büttcher et al., 2005; Camel et al., 2001), and 
different search engines. Also, much effort has 
been spent on the improvement of its performance 
by using integer coding (Golomb, 1966), bitmap 
compression (Apaydin et al., 2006; Bjørklund 
et al., 2009), caching (Saraiva et al., 2001), 
and parallelism (Ao et al., 2011). For a static 
environment, the bitmap compression is most 
efficient. However, it is obviously not suitable 
for a dynamical environment like the Web. So, 
different set intersection algorithms have been 
proposed to directly manipulate sorted arrays 
(Barbay et al., 2009), with caching (Barbay et al., 
2009; Saraiva et al., 2001), parallelism (Ao et al., 
2011), interpolation (Demaine et al., 2004), and 
even hardware characteristics (Tsirogiannis et al., 
2009) being utilized to enhance performance. The 
method discussed in (Ding et al., 2011) is an in-

memory algorithm for set intersection, by which 
an inverted list is partitioned into a collection of 
sublists. Then, generate a hash image for each of 
them, by which a number in an inverted list is 
mapped to a single bit in an image. In this way, a 
set intersection is done by a series of hash value 
intersections.

INDEX STRUCTURES

In this section, we mainly discuss our index struc-
ture, by which each word with high frequency will 
be assigned an interval sequence. We will then 
associate intervals, instead of words, with inverted 
sub-lists. To clarify this mechanism, we will first 
discuss interval sequences for words in Subsection 
1. Then, in Subsection 2, how to associate inverted 
lists with intervals will be addressed.

1. Interval Sequences 
Assigned to Words

Let D = {D1,..., Dn} be a set of documents. Let 
Wi = {wi1, …, w

iji
}i = 1, …, n) be all of the words 

appearing in Di, to be indexed. Denote 
W W

ii

n
=

=1∪ , called the vocabulary. We define 
the word appearance frequency by the following 
formula:

f(w) = 
num of documents containing w

num of documents

.

.
, (w 

∈ W).	

We then define a frequency threshold ζ. For 
any word w with f(w) < ζ, we will associate it 
with an inverted list in a normal way, denoted as 
δ(w), exactly as in the method of inverted files. 
However, for all those with f(w) ≥ ζ, we will create 
a new index. For this, we will represent each Di 
as a sequence containing all those words w with 
f(w) ≥ ζ, decreasingly sorted by f(w). That is, in 
such a sequence, a word w precedes another w′ 
if w is more frequent than w′ in all documents. 



 

 

9 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/an-efficient-and-effective-index-structure-for-

query-evaluation-in-search-engines/184495

Related Content

Comparative WebGIS Software Study: How to Support Users Decisions on the Best Solution to

Their Organizations
Sandra Venturaand Alcina Prata (2021). Handbook of Research on Multidisciplinary Approaches to

Entrepreneurship, Innovation, and ICTs (pp. 286-305).

www.irma-international.org/chapter/comparative-webgis-software-study/260562

Clouds of Quantum Machines
Nilo Sylvio Serpa (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 1040-

1062).

www.irma-international.org/chapter/clouds-of-quantum-machines/183819

Factors Influencing the Adoption of ISO/IEC 29110 in Thai Government Projects: A Case Study
Veeraporn Siddooand Noppachai Wongsai (2017). International Journal of Information Technologies and

Systems Approach (pp. 22-44).

www.irma-international.org/article/factors-influencing-the-adoption-of-isoiec-29110-in-thai-government-projects/169766

Fuzzy Decoupling Energy Efficiency Optimization Algorithm in Cloud Computing Environment
Xiaohong Wang (2021). International Journal of Information Technologies and Systems Approach (pp. 52-

69).

www.irma-international.org/article/fuzzy-decoupling-energy-efficiency-optimization-algorithm-in-cloud-computing-

environment/278710

Optimal Preemptively Scheduling for Real-Time Reconfigurable Uniprocessor Embedded

Systems
Hamza Gharsellaoui (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 7234-

7246).

www.irma-international.org/chapter/optimal-preemptively-scheduling-for-real-time-reconfigurable-uniprocessor-

embedded-systems/112421

http://www.igi-global.com/chapter/an-efficient-and-effective-index-structure-for-query-evaluation-in-search-engines/184495
http://www.igi-global.com/chapter/an-efficient-and-effective-index-structure-for-query-evaluation-in-search-engines/184495
http://www.irma-international.org/chapter/comparative-webgis-software-study/260562
http://www.irma-international.org/chapter/clouds-of-quantum-machines/183819
http://www.irma-international.org/article/factors-influencing-the-adoption-of-isoiec-29110-in-thai-government-projects/169766
http://www.irma-international.org/article/fuzzy-decoupling-energy-efficiency-optimization-algorithm-in-cloud-computing-environment/278710
http://www.irma-international.org/article/fuzzy-decoupling-energy-efficiency-optimization-algorithm-in-cloud-computing-environment/278710
http://www.irma-international.org/chapter/optimal-preemptively-scheduling-for-real-time-reconfigurable-uniprocessor-embedded-systems/112421
http://www.irma-international.org/chapter/optimal-preemptively-scheduling-for-real-time-reconfigurable-uniprocessor-embedded-systems/112421

