
35

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

DOI: 10.4018/978-1-5225-2639-1.ch002

ABSTRACT

Educational software is somewhat unique in that the goal of the software is not to facilitate use of the
software itself, but to produce an impact on the user - learning - that will affect the user’s behavior
outside of the software. Although there are many areas where educational software designers can learn
from practices in productivity and game design, there are reasons to be cautious in applying such prin-
ciples to educational software. This chapter considers several design elements in educational software
and discusses ways that software principles taken from other areas do or do not apply to educational
software design.

INTRODUCTION

Educational software often takes its cues from productivity software and from software games. However,
those categories of software often have different goals from educational software, requiring caution in
applying principles derived from these other categories to educational software design. This chapter
argues that educational software constitutes a category of software different from productivity software
and from game software. The goals and conditions of educational software use differ enough that us-
ability considerations sometimes differ from these other two categories. The goal of this chapter is to
elucidate some ways in which educational software can benefit from lessons learned from game and

Educational Software Design:
Education, Engagement, and

Productivity Concerns

Steve Ritter
Carnegie Learning, USA

R. Charles Murray
Carnegie Learning, USA

Robert G. M. Hausmann
Carnegie Learning, USA

36

Educational Software Design

productivity software and some ways in which the goals of educational software are different enough
that different principles need to be used.

In recent years, game designers have sought to distinguish usability principles for good game design
from those espoused for normal business (often called “productivity”) software (Isbister & Schaffer,
2008; Schell, 2014). The two types of software have different goals. Productivity software typically
strives to allow the user to accomplish her goal in as efficient a manner as possible. Clarity and predict-
ability are paramount. In contrast, the primary goal in game software is to entertain. Rather than trying
to minimize the time the user spends in the software (or the number of clicks to accomplish a goal), the
game designer’s goal may be to encourage the user to stay with the software for a longer period of time
and to do more “work.” Clarity and predictability are not always the most important considerations.
Some mystery and surprise may add to the delight of a game. The difference in goals between games
and productivity software has led to differences in design styles and recommendations for the two types
of software.

Educational software constitutes a third type of software, distinct from either productivity software
or game software. While some principles of design overlap with principles from these domains, others
remain distinct. These distinctions are driven by the different context of educational software. Like pro-
ductivity software, educational software emphasizes clarity, at least with respect to educational content.
However, like game software, educational software is not overly focused on reaching the goal with a
minimum amount of effort. In fact, imposing effort is often part of the educational pedagogy (c.f. Bjork
and Bjork, 2011).

These three types of software overlap and intermingle in interesting ways, mixing goals and methods
to achieve their aims. For instance, “serious games” (aka educational games) combine the high-level
goals of entertaining and educating the user. At a more detailed level, good educational software bor-
rows techniques from productivity software to help the user efficiently get past topics that are not on
the learning agenda in order to focus on topics that are. This chapter outlines ways in which educational
software both differs from, and shares with, productivity and game software.

Based on over 50 years combined experience in designing adaptive educational software, the authors
will propose principles of good educational software design, illustrated with examples from Carnegie
Learning’s Cognitive Tutor® and MATHia®. Topics discussed will include unique characteristics of
educational software users, balancing helping the student with achieving educational goals, assessing the
student’s knowledge, transparency and “gaming” the system, the several voices of educational software,
consistency vs. variety in the user interface, encouraging mistakes, and aligning the software’s reward
structure with educational objectives.

BALANCING USABILITY WITH EDUCATIONAL GOALS

Good productivity software tries to do everything it reasonably can for the user, even anticipating the
user’s needs. From automatically completing forms, to scheduling appointments based on email, to actu-
ally driving the user to the appointments, productivity software’s attempts to help users complete tasks
more easily and efficiently is ever-expanding.

Game software often does something similar, if more subtly. For instance, virtual worlds abstract
away from messy details of reality so that the user can focus on the game action. If “eating” to have
energy is not important to the game action, it is not important in the virtual world. Game software helps

15 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/educational-software-design/183011

Related Content

Users as Developers: A Field Study of Call Centre Knowledge Work
Beryl Burns (2009). Evolutionary Concepts in End User Productivity and Performance: Applications for

Organizational Progress (pp. 116-130).

www.irma-international.org/chapter/users-developers-field-study-call/18648

App Review: ScratchJr (Scratch Junior)
Steve Goschnick (2015). International Journal of People-Oriented Programming (pp. 50-55).

www.irma-international.org/article/app-review/160366

Privacy Management Architecture Privacy Technologies
Larry Korba, Ronggong Songand George Yee (2008). End-User Computing: Concepts, Methodologies,

Tools, and Applications (pp. 1193-1219).

www.irma-international.org/chapter/privacy-management-architecture-privacy-technologies/18249

Mutual Development: The Software Engineering Context of End-User Development
Anders I. Mørchand Renate Andersen (2010). Journal of Organizational and End User Computing (pp. 36-

57).

www.irma-international.org/article/mutual-development-software-engineering-context/42077

Teaching Political Science Students to Find and Evaluate Information in the Social Media Flow
Megan Fitzgibbons (2013). Social Software and the Evolution of User Expertise: Future Trends in

Knowledge Creation and Dissemination (pp. 180-200).

www.irma-international.org/chapter/teaching-political-science-students-find/69760

http://www.igi-global.com/chapter/educational-software-design/183011
http://www.irma-international.org/chapter/users-developers-field-study-call/18648
http://www.irma-international.org/article/app-review/160366
http://www.irma-international.org/chapter/privacy-management-architecture-privacy-technologies/18249
http://www.irma-international.org/article/mutual-development-software-engineering-context/42077
http://www.irma-international.org/chapter/teaching-political-science-students-find/69760

