
953

SSQL Injection Attack as a Threat of Web
Portals
Theodoros Tzouramanis
University of the Aegean, Greece

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

Introduction

SQL injection attack (CERT, 2002) is one of the most
prevalent security problems faced by today’s security profes-
sionals. It is today the most common technique to indirectly
attack Web-powered databases and disassemble effectively
the secrecy, integrity and availability of Web portals. The
basic idea behind this insidious and pervasive attack is that
predefined logical expressions within a pre-defined query
can be altered simply by injecting operations that always
result in true or false statements. With this simple technique,
the attacker can run arbitrary SQL queries and thus s/he
can extract sensitive customer and order information from
e-commerce applications, or she/he can bypass strong se-
curity mechanisms and compromise the back-end databases
and the file system of the data server. Despite these threats,
a surprisingly high number of systems on the internet are
totally vulnerable to this attack.

The article discusses various ways in which SQL can
be “injected” into a Web portal. It presents some advanced
methods of SQL injection, which can result in the compromise
of the system. Techniques for the detection of SQL injection
attacks are presented and some database lockdown issues
related to this type of attack are discussed. The article con-
cludes by providing secure coding practices and mechanisms
that protect Web applications against unexpected data input
by users; alteration to the database structure; corruption of
data; and disclosure of private and confidential information
that are all owed to the susceptibility of these applications
to this form of attack.

Background

Most organizations that have an “online presence” these
days will be protected by some kind of software or hardware
firewall solution (Theriault & Newman, 2001). The purpose
of the firewall is to filter network traffic that passes into and
out of the organization’s network, limiting the use of the
network to allowed, “legitimate” users. One of the conceptual
problems with relying on a firewall for security is that the
firewall operates at the level of IP addresses and network
ports. Consequently, a firewall does not understand the details
of higher-level protocols such as hypertext transfer protocol
(HTTP), that is, the protocol that runs the Web portals.

There is a whole class of attacks that operate at the ap-
plication layer and that, by definition, pass straight through
firewalls. SQL injection is one of these attacks. It takes
advantage of nonvalidated input vulnerabilities to pass SQL
commands through a Web portal for execution by a backend
database, that is, the heart of most Web applications. Attack-
ers take advantage of the fact that programmers often chain
together SQL commands with user-provided parameters, and
can therefore embed SQL commands inside these parameters.
Therefore, the attacker can execute malicious SQL queries
on the backend database server through the Web portal.

To be able to perform SQL injection hacking, all an at-
tacker needs is a Web browser and some guess work to find
important table and field names. This is why SQL injection
is one of the most common application layer attacks cur-
rently being used on the Internet. The inventor of the at-
tack is the Rain Forest Puppy, a former hacker and, today,
a security advisor to international companies of software
development.

SQL Injection Attack

SQL injection is a particularly insidious attack since it
transcends all of the good planning that goes into a secure
database setup and allows mistrusted individuals to inject
code directly into the database management system (DBMS)
through a vulnerable application (Litchfield, 2001). The basic
idea behind this attack is that the malicious user counterfeits
the data that a Web portal sends to the database aiming at
the modification of the SQL query that will be executed by
the DBMS (Spett, 2002). This falsification seems harmless
at first glance but it is actually exceptionally vicious. One of
the most worrying aspects of the problem is that successful
SQL injection is very easy to perform, even if the developers
of the Web portals are aware of this type of attack.

The technologies vulnerable to SQL injection attack are
dynamic script languages like ASP, ASP.NET, PHP, JSP,
CGI, and so forth (Anupam & Mayer, 1998). Imagine, for
example, the typical user and password entry form of a Web
portal that appears in Figure 1. When the user provides her/his
credentials, an ASP (active server page) code similar to the
one that appears in Figure 2 might undertake to produce the
SQL query that will certify the user’s identity.

954

SQL Injection Attack as a Threat of Web Portals

In practice, when the user types a combination of valid
login name and password, the portal will confirm the ele-
ments by submitting a relative SQL query in some table
USERS with two columns: the column username and the
column password. The most important part of the code of
Figure 2 is the line:

sql = “select * from users where username = ‘ “ + username
+” ‘ and password = ‘ “ + password + “ ‘ “;

The query is sent for execution into the database. The
values of the variables username and password are provided
by the user. For example, if the user types:

username: george

password: 45dc&vg3

the SQL query that is produced is the:

select * from USERS where username = ‘george’ and pass-
word = ‘45dc&vg3’;

which means that if this pair of username and password is
stored in the table USERS, the authentication is successful
and the user is inserted in the private area of the Web portal.

If however the malicious user types in the entry form the
following unexpected values:

username: george

password: anything’ or ‘1’ = ‘1

then the dynamic SQL query is the:

select * from USERS where username = ‘george’ and pass-
word = ‘anything’ or ‘1’ = ‘1’;

The expression ‘1’=‘1’ is always true for every row in the
table, and a true expression connected with ‘or’ to another
expression will always return true. Therefore, the database
returns all the tuples of the table USERS. Then, provided that
the Web portal application received, for an answer, certain
tuples, it concludes that the user’s password is ‘anything’
and permits his/her entry. In the worst case the Web portal
application presents on the screen of the malicious user all the
tuples of the table USERS, which is to say all the usernames
with their passwords.

If the malicious user knows the whole or part of the
login name of a user, the malicious user can log on as the
user, without knowing the user’s password, by entering a
username like in the following form:

username: ‘ or username like ‘admin%’--

password:

The “—” sequence begins a single-line comment in
Transact-SQL, so in a Microsoft SQL Server environment,
everything after that point in the query will be ignored. By
similar expressions the malicious user can change a user’s
password, drop the USERS table, create a new database:
the malicious user can effectively do anything possible to
express as an SQL query that the Web portal has the privilege
of doing, including running arbitrary commands, creating

Figure 1. A typical user authentication form in a Web
portal

Figure 2. An ASP code example that manages the users’ login requests in a database through a Web portal

username = Request.form("username");
	 password = Request.form("password");
	 var con = Server.CreateObject(ADODB.Connection");
	 var rso = Server.CreateObject(ADODB.Recordset");
	 var sql = "select * from users where username = ' " + username + " ' and
password = ' " + password + " ' ";
	 rso.open(sql,con);
	 if not rso.eof () then
		 responsible.while ("Welcome to the database!")

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/sql-injection-attack-threat-web/17992

Related Content

Use of Web Analytics in Portals
Jana Polgar (2010). International Journal of Web Portals (pp. 40-44).

www.irma-international.org/article/use-web-analytics-portals/49565

Semantic Integration and Interoperability among Portals
Konstantinos Kotis (2007). Encyclopedia of Portal Technologies and Applications (pp. 881-886).

www.irma-international.org/chapter/semantic-integration-interoperability-among-portals/17980

Standards Overview
Jana Polgar, Robert Mark Braumand Tony Polgar (2006). Building and Managing Enterprise-Wide Portals (pp.

219-236).

www.irma-international.org/chapter/standards-overview/5978

Online Payment via PayPal API Case Study Event Registration Management System (ERMS)
Saeed Shadlou, Ng Jie Kaiand Abdolreza Hajmoosaei (2011). International Journal of Web Portals (pp. 30-37).

www.irma-international.org/article/online-payment-via-paypal-api/55110

Open Source ESB in Action
Jana Polgar (2009). International Journal of Web Portals (pp. 48-62).

www.irma-international.org/article/open-source-esb-action/37470

http://www.igi-global.com/chapter/sql-injection-attack-threat-web/17992
http://www.igi-global.com/chapter/sql-injection-attack-threat-web/17992
http://www.irma-international.org/article/use-web-analytics-portals/49565
http://www.irma-international.org/chapter/semantic-integration-interoperability-among-portals/17980
http://www.irma-international.org/chapter/standards-overview/5978
http://www.irma-international.org/article/online-payment-via-paypal-api/55110
http://www.irma-international.org/article/open-source-esb-action/37470

