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Conversion of Higher into 
Lower Language Using 
Machine Translation

ABSTRACT

This chapter addresses an exclusive approach to expand a machine translation system begin-
ning higher language to lower language. Since we all know that population of India is 1.27 
billion moreover there are more than 30 language and 2000 dialects used for communication 
of Indian people. India has 18 official recognized languages similar to Assamese, Bengali, 
English, Gujarati, Hindi, Kannada, Kashmiri, Konkani, Malayalam, Manipuri, Marathi, 
Nepali, Oriya, Punjabi, Sanskrit, Tamil, Telugu, and Urdu. Hindi is taken as regional lan-
guage and is used for all types of official work in central government offices. Commencing 
such a vast number of people 80% of people know Hindi. Though Hindi is also regional 
language of Jabalpur, MP, India, still a lot of people of Jabalpur are unable to speak in 
Hindi. So for production those people unswerving to know Hindi language we expand a 
machine translation system. For growth of such a machine translation system, used apertium 
platform as it is free/open source. Using apertium platform a lot of language pairs more 
specifically Indian language pairs have already been developed. In this chapter, develop 
a machine translation system for strongly related language pair i.e Hindi to Jabalpuriya 
language (Jabalpur, MP, India).
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INTRODUCTION

Natural Language Processing

Natural language is an integral part of our day today lives. Language is the most 
common and most ancient way to exchange information among human beings. 
people communicate and record information.NLP is a field of computer science 
and artificial intelligence; here natural language means the language used by human 
being for communication among themselves. NLP is a form of human-to-computer 
interaction. ie the nlp basically implies making human to machine interaction easy 
and in human language .

One of the major problems encountered by any nlp system is lexical ambigu-
ity here the term lexical ambiguity means the particular word having more than 
one meaning lexical ambiguity in simple words can better be stated as presence of 
homonymy and polysemy. Ambiguity is further of two types syntactic and semantic. 
Syntactic ambiguity means when sentence can be parsed in more than one manner. 
The word’s syntactic ambiguity can be resolved in language processing by part-of-
speech taggers with very high level of accuracy. Semantic ambguty The problem 
of resolving semantic ambiguity is generally known as word sense disambiguation 
(WSD) and has been proved to be more difficult than syntactic disambiguation.

Word Sense Disambiguation

Any natural language known to human beings there exists that can have more than 
one possible meaning, for example a bat can be a small creature or a cricket equip-
ment and a bank can mean river ‘s bank or a money bank (the financial institution 
one) . since if the other meaning than the intended one is used in particular context 
it can cause a huge translation hazard Given these complications, it is important for 
a computer to correctly determine the meaning in which a word is used. hence it is 
very clear to s that Ambiguity is natural phenomena in to human language and it 
constitutes one of the most important problem for computational applications in of 
Natural Language Processing (NLP). Ideally, systems should be able to deal with 
ambiguity in order to increase performance in nlp applications such as Text Sum-
marization and Information Retrieval. The process of assigning the correct sense 
of ambiguous words Words can have different senses. Some words have multiple 
meanings. This is called Polysemy. For example: bank can be a financial institute 
or a river shore. Sometimes two completely different word are spelled the same.

For example: Can, can be used as model verb: You can do it, or as container: 
She brought a can of soda. This is called Homonymy. Distinction between poly-
semy and homonymy is not always clear. Word sense disambiguation (WSD) is the 
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