
126

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

DOI: 10.4018/978-1-5225-1848-8.ch006

ABSTRACT

CPU Scheduler is one of the crucial modules of any operating system. Operating system uses CPU sched-
ulers based on the requirements. Fair Share CPU scheduler is preferable scheduler by many operating
systems. It distributes fixed processor time amongst different parts of a system like groups, users etc.
Fixed distribution of processor time can distress the performance of system. Moreover, traditional CPU
schedulers ignore the impreciseness and uncertainty of the tasks. This work presents the Intuitionistic
Fuzzy based Fair Share scheduler (IFFS). IFFS scheduler has extended the research in the field of the
impreciseness of tasks. Intuitionistic Fuzzy Inference Systems, IFIS-DP and IFIS-DCS have been designed
to share the CPU time dynamically and for assigning dynamic priority to each task. Experimental results
prove the better performance of IFFS scheduler over FS scheduler.

CPU SCHEDULER: MAIN MODULE OF AN OPERATING SYSTEM

Operating System is a significant software component of any computer system. These software compo-
nents are mainly divided into two categories,

• System software and
• Application software.

Operating system belongs to the system software category. The main task of system software is to
run the application software. System software supports the running of programs which uses computer
system to run. In modern era, computer system contains a number of different hardware components like:

Intuitionistic Fuzzy Set Theory
with Fair Share CPU Scheduler:

A Dynamic Approach

Supriya Raheja
NorthCap University, India

127

Intuitionistic Fuzzy Set Theory with Fair Share CPU Scheduler

• Processor (CPU),
• Hard disk drives,
• Monitors,
• Different memory,
• Keyboards and
• Other input and output devices.

The other main task of operating system is to manage these resources. The operating system has vari-
ous modules that works together to carry out the resource management functions and there in between
interactions. For example Task Manger, this creates and destroys the tasks, Memory Manager, which
manages the usage of main memory (allocation and release of memory blocks), Device Drivers, which
deals with hardware devices, File Manager that manages the file system etc (Galvin & Gagne, 2009).
Another main module of an operating system is the CPU Scheduler which handles the scheduling of tasks.

In a multitasking environment, multiple tasks are simultaneously stored in main memory. Operat-
ing system requires CPU schedulers to provide the concurrent execution of tasks. When multiple tasks
are stored in main memory, the CPU schedulers makes an illusion that each task has its own CPU. It is
also known as Short Term scheduler. However, the CPU will be executing only one task at a time, but it
switch from one task to another task to support concurrent execution (Dhamdhere, 2006; Stallings, 2014).
The CPU scheduler at particular time selects one ready task from the main memory (Ready Queue) and
allocates CPU to that task. The CPU scheduler decides whom to execute next and for how long. The
performance of the system varies in accordance to the chosen criteria i.e. on scheduling technique since
it changes the ready state of task to running state. When the task is in ready queue then it is in ready
state and when CPU is assigned to it, it is in running or active state. An effective scheduling can enhance
the performance; on the other hand an ineffective scheduling can lead to reduce the performance of the
entire system. Like, with non-preemptive scheduling algorithm, a system can suffer with the convoy
effect. When many tasks are in waiting state while one big task is executing it is called convoy effect. It
degrades the performance as the one big task halts the execution of all other small tasks.

Different operating systems use different schedulers based on their requirements like the operating
systems which handle the tasks based on their criticality prefer to use priority based schedulers. The
CPU scheduler usually executes the highest-priority tasks first. For example, whenever a currently run-
ning task is interrupted by an event then the CPU scheduler must make some optimal adjustments and
schedule the next highest-priority task to processor. Windows & Solaris based operating systems prefer
to uses multilevel feedback queue scheduler whereas UNIX based operating systems usually use fair
share scheduler. This chapter discusses Fair Share (FS) CPU scheduler.

FAIR SHARE SCHEDULER AND ITS STATIC APPROACH

FS CPU scheduler equally/statically distributes the processor time between groups, users and tasks, as
opposed to the fixed distribution among tasks (Round Robin Schedulers). Fairness should be the major
consideration for any scheduler. Traditional schedulers considered that every task belongs to a different
user, therefore schedulers like Round Robin logically distributes equal CPU services/processor time to
all tasks (Sabin et al.,1996; Nie et al., 2011). When several tasks need a processor, operating system
often allots processor time slices on a round robin fashion i.e. scheduler distributes equal time to all tasks

26 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/intuitionistic-fuzzy-set-theory-with-fair-share-cpu-

scheduler/174733

Related Content

Bio-Inspired Computing through Artificial Neural Network
Nilamadhab Dash, Rojalina Priyadarshini, Brojo Kishore Mishraand Rachita Misra (2017). Fuzzy Systems:

Concepts, Methodologies, Tools, and Applications (pp. 1285-1313).

www.irma-international.org/chapter/bio-inspired-computing-through-artificial-neural-network/178441

Embedded System Verification Using Formal Model an Approach Based on the Combined Use

of UML and Maude Language
Meliouh Ameland Chaoui Allaoua (2018). International Journal of Conceptual Structures and Smart

Applications (pp. 42-58).

www.irma-international.org/article/embedded-system-verification-using-formal-model-an-approach-based-on-the-

combined-use-of-uml-and-maude-language/233534

Intelligent Information Integration: Reclaiming the Intelligence
Naveen Ashishand David A. Maluf (2009). International Journal of Intelligent Information Technologies (pp.

28-54).

www.irma-international.org/article/intelligent-information-integration/4038

The Undervaluation of Family Businesses: The Explanatory Power of Governance Mechanisms
Narjess Skhiri Ep Hellara (2024). Social and Ethical Implications of AI in Finance for Sustainability (pp. 247-

267).

www.irma-international.org/chapter/the-undervaluation-of-family-businesses/345122

Review on Healthcare Quality Using Machine Learning Methods
Pokkuluri Kiran Sreeand N. Usha Devi (2023). AI and IoT-Based Technologies for Precision Medicine (pp.

413-430).

www.irma-international.org/chapter/review-on-healthcare-quality-using-machine-learning-methods/332847

http://www.igi-global.com/chapter/intuitionistic-fuzzy-set-theory-with-fair-share-cpu-scheduler/174733
http://www.igi-global.com/chapter/intuitionistic-fuzzy-set-theory-with-fair-share-cpu-scheduler/174733
http://www.irma-international.org/chapter/bio-inspired-computing-through-artificial-neural-network/178441
http://www.irma-international.org/article/embedded-system-verification-using-formal-model-an-approach-based-on-the-combined-use-of-uml-and-maude-language/233534
http://www.irma-international.org/article/embedded-system-verification-using-formal-model-an-approach-based-on-the-combined-use-of-uml-and-maude-language/233534
http://www.irma-international.org/article/intelligent-information-integration/4038
http://www.irma-international.org/chapter/the-undervaluation-of-family-businesses/345122
http://www.irma-international.org/chapter/review-on-healthcare-quality-using-machine-learning-methods/332847

