Journal of Database Management
Volume 27 - Issue 3 « July-September 2016

Path Expressions in SQL.:
A User Study on Query Formulation

Marko Junkkari, School of Information Sciences, University of Tampere, Tampere, Finland
Johanna Vainio, School of Information Sciences, University of Tampere, Tampere, Finland
Kati Iltanen, School of Information Sciences, University of Tampere, Tampere, Finland
Paavo Arvola, School of Information Sciences, University of Tampere, Tampere, Finland
Heidi Kari, School of Information Sciences, University of Tampere, Tampere, Finland

Jaana Kekaldinen, School of Information Sciences, University of Tampere, Tampere, Finland

ABSTRACT

This article focuses on testing a path-oriented querying approach to hierarchical data in relational
databases. The authors execute a user study to compare the path-oriented approach and traditional
SQL from two perspectives: correctness of queries and time spent in querying. They also analyze
what kinds of errors are typical in path-oriented SQL. Path-oriented query languages are popular
in the context of object-orientation and XML. However, relational databases are the most common
paradigm for storing data and SQL is most common for manipulating data. When querying hierarchical
data in SQL, the user must specify join conditions explicitly between hierarchy levels. Path-oriented
SQL is a new alternative for expressing hierarchical queries in relational databases. In the authors’
study, the users spent significantly less time in writing path-oriented SQL queries and made fewer
errors in query formulation.

KEYWORDS
Hierarchical Data, Path-Orientation, PathSQL, Query Language, Relational Databases, SQL, User Test

INTRODUCTION

Query languages are focused on accessing data and relationships in databases. A database is organized
based on the underlying data model. Relational databases are the most common database paradigm
and are based on the relational data model (Codd, 1983). In the relational data model, the data is
organized in relations (tables) and the data records in different relations are associated with each
other by foreign key constraints. SQL (Chamberlin et al., 1974) is the most common query language
for relational databases. In it, the user specifies the target of the query, source relations, conditions
among relations, and possible join operations among relations. Relational databases are general
purpose databases and all relationships are represented similarly.

In many domains, the data has a hierarchical nature, meaning that the data can be viewed through
several hierarchical levels (Bernauer, 1996; Burrough and McDonnell, 1998; Niemi and Jérvelin,
1995; Motschnig-Pitrik and Kaasboll, 1999; Pazzi, 1999; Urtado and Oussalah, 1998). For example,
a physical assembly contains components that in turn contain smaller components, etc. (Junkkari,
2005). In relational databases, the components and the composites they form are represented in
separate relations and part-of relationships are represented by foreign key constraints (David, 2003).
In SQL, the part-of relationships are manipulated like any association among data. This means that

DOI: 10.4018/JDM.2016070101

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



Journal of Database Management
Volume 27 - Issue 3 « July-September 2016

the user must explicitly specify join operations or foreign key constraints between a composition
and its components. In large hierarchies, the user must specify a great number of join operations or
equal conditions for foreign key constraints. In the research literature, join operations are shown to
cause difficulties for users in query writing (Chan, Lu and Wei, 1993; Chan, 2007; Rho and March,
1996; Smelcer, 1995).

Vainio and Junkkari (2014) have recently proposed an alternative way to formulate hierarchical
queries, i.e. they embed path expressions into SQL. We call their language PathSQL. Path expressions
are widely used in the context of hierarchical data in early data models (Elmasri and Navathe, 1989)
and later on in the context of semi-structured data models XML (Bray et al., 1998; Clark and DeRose,
1999; Deutsch et al., 1999) and JSON (Ong et al. 2014). Path-oriented query languages are also used
in object-oriented databases (Cattell and Barry, 2000; Cluet, 1998; Alashqur et al., 1989). However, in
spite of the popularity of path-oriented query languages, they have not been tested from the perspective
of how easy they are to learn and use compared with SQL, the most popular query language. Now,
the work by Vainio and Junkkari enables the testing of the path-oriented query approach.

Vainio and Junkkari (2014) demonstrated that queries with path expressions are shorter and
more compact. Nevertheless, they do not provide experimental evidence about the usefulness of
their approach. We agree with Vainio and Junkkari that path expressions shorten some queries, but
this does not ensure that the path-oriented query language would be easier or faster to use. In the
present paper, we test traditional SQL and PathSQL languages with users having experience in SQL
and minor experience in path-oriented query languages. We compare the time spent in formulating
queries in both languages and the number of correct and erroneous queries per user and language.
We also analyze what types of errors are common in formulating path-oriented queries.

The rest of the paper is organized as follows. Next, query test approaches are surveyed. Then,
the SQL and PathSQL languages are introduced briefly. The main focus is on PathSQL because it is
anew querying approach and thus not as well-known as the original SQL. After that, the test setting
and query topics are introduced. Again, we focus on introducing of PathSQL queries; related SQL
queries are given in an appendix. Then, the test is analyzed and its results are given. We compare the
correctness of the queries and the time spent in writing them in PathSQL and traditional SQL. We
also classify and analyze the errors of the PathSQL queries. Then, the results and possible extensions
of PathSQL are discussed. Finally, the conclusions are given.

RELATED WORK

Relational database query languages have been tested with users since the 1970s. Welty (1990) gives
a valuable overview of studies involving SQL from 1971-1989. These tests, e.g., evaluate the ease-
of-use of a query language or compare two or more query languages. Reisner (1981) has studied
user tests of query languages, and states that six different tasks and six different tests have been used
to measure ease-of-use. These tasks are query writing, query reading, query interpretation, question
comprehension, memorization, and problem solving. The most popular tests are the final exam of
learning, immediate comprehension, and retention. Some of the earlier user tests on relational database
query languages are briefly represented below. The most common task is query writing and the most
common test is a final exam.

The ease-of-use of SQUARE and SQL was tested by Reisner et al. (1975). Four groups of students
participated in the test, 61 students in all. Two of the groups were programmers and the other two
groups were non-programmers. One group of programmers and one group of non-programmers where
taught SQL and the others where taught SQUARE. Non-programmers were taught for 14 academic
hours whereas the programmers were taught for 12 academic hours. A final exam was executed after
the instruction and a retention test was conducted a week later. The main task was query writing. The
authors’ conclusions were that programmers were able to learn SQL “more completely” than non-



20 more pages are available in the full version of this
document, which may be purchased using the "Add to Cart"
button on the publisher's webpage: www.igi-
global.com/article/path-expressions-in-sql/172451

Related Content

Understanding Agile Software, Extreme Programming, and Agile Modeling
John Erickson, Kalle Lyytinenand Keng Siau (2007). Research Issues in Systems
Analysis and Design, Databases and Software Development (pp. 33-53).
www.irma-international.org/chapter/understanding-agile-software-extreme-programming/28432

Computation Offloading Method for Large-Scale Factory Access in Edge-
Edge Collaboration Mode

Junfeng Man, Longgian Zhao, Bowen Xu, Cheng Peng, Junjie Jiangand Yi Liu
(2023). Journal of Database Management (pp. 1-29).
www.irma-international.org/article/computation-offloading-method-for-large-scale-factory-

access-in-edge-edge-collaboration-mode/318451

INDUSTRY AND PRACTICE: New Direction for Database Management

Research
Sufi M. Nazem (1997). Journal of Database Management (pp. 34-35).
www.irma-international.org/article/industry-practice-new-direction-database/51179

Semantic Heterogeneity in Multidatabase Systems: A Review and a
Proposed Meta-Data Structure

Te-Wei Wangand Kenneth E. Murphy (2004). Journal of Database Management (pp.
71-87).
www.irma-international.org/article/semantic-heterogeneity-multidatabase-systems/3321

Different Kinds of Hierarchies in Multidimensional Models

Elzbieta Malinowski (2009). Handbook of Research on Innovations in Database
Technologies and Applications: Current and Future Trends (pp. 45-55).
www.irma-international.org/chapter/different-kinds-hierarchies-multidimensional-models/20687



http://www.igi-global.com/article/path-expressions-in-sql/172451
http://www.igi-global.com/article/path-expressions-in-sql/172451
http://www.irma-international.org/chapter/understanding-agile-software-extreme-programming/28432
http://www.irma-international.org/article/computation-offloading-method-for-large-scale-factory-access-in-edge-edge-collaboration-mode/318451
http://www.irma-international.org/article/computation-offloading-method-for-large-scale-factory-access-in-edge-edge-collaboration-mode/318451
http://www.irma-international.org/article/industry-practice-new-direction-database/51179
http://www.irma-international.org/article/semantic-heterogeneity-multidatabase-systems/3321
http://www.irma-international.org/chapter/different-kinds-hierarchies-multidimensional-models/20687

