68

Chapter 4

Combining Static Code Analysis
and Machine Learning for
Automatic Detection of Security
Vulnerabilities in Mobile Apps

Marco Pistoia
IBM Corporation, USA

Omer Tripp
IBM T. J. Watson Research Center, USA

David Lubensky
IBM T. J. Watson Research Center, USA

ABSTRACT

Mobile devices have revolutionized many aspects of our lives. Without realizing it, we often run on them
programs that access and transmit private information over the network. Integrity concerns arise when
mobile applications use untrusted data as input to security-sensitive computations. Program-analysis
tools for integrity and confidentiality enforcement have become a necessity. Static-analysis tools are
particularly attractive because they do not require installing and executing the program, and have the
potential of never missing any vulnerability. Nevertheless, such tools often have high false-positive rates.
In order to reduce the number of false positives, static analysis has to be very precise, but this is in con-
flict with the analysis’ performance and scalability, requiring a more refined model of the application.
This chapter proposes Phoenix, a novel solution that combines static analysis with machine learning to
identify programs exhibiting suspicious operations. This approach has been widely applied to mobile
applications obtaining impressive results.

DOI: 10.4018/978-1-5225-0945-5.ch004

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



Combining Static Code Analysis and Machine Learning for Automatic Detection of Security Vulnerabilities

INTRODUCTION

Mobile devices have revolutionized many aspects of our lives. We use smartphones, tablets and wearable
devices as portable computers and, often without realizing it, we run various types of security-sensitive
programs on them, such as personal and enterprise email and instant-messaging applications, as well as
social, banking, insurance and retail programs. These applications access and transmit over the network
numerous pieces of private information, including our geographical location, device ID, contacts, calendar
events, passwords, and health records, as well as credit-card, social-security, and bank-account numbers.
Guaranteeing that no private information is exposed to unauthorized observers is very challenging, given
the level of complexity that these applications have reached. Integrity concerns arise when mobile ap-
plications take untrusted user data as input to security-sensitive computations. In such cases, in order
to avoid integrity violations, it is necessary to verify that the appropriate validation and/or sanitization
routines are invoked. Program analysis tools for integrity and confidentiality enforcement have become
a necessity, especially for mobile applications, which are updated very often and require high security
assurance. Roughly speaking, such tools can be either “dynamic” or “static”. Dynamic-analysis tools
execute the program and infer security vulnerabilities based on the actual program executions. Such
solutions can be quite time consuming because they require installing the program under analysis and
then executing it multiple times, with different inputs and different execution choices on each run, in
order to maximize the number of execution paths explored by the analysis. Often, however, there is
no real guarantee that all the possible paths of execution have been explored. This means that some
security vulnerabilities may remain undiscovered by the time the application is released. Conversely,
a static-analysis tool does not require installing or executing the program. Rather, a formal model that
over-approximates all feasible program executions is built, and the analysis reports results based on that
model. Unlike dynamic analysis, static analysis has the potential of never missing any vulnerability, but it
may report false positives; that is, it might signal security issues that are never exposed at run-time. Some
analysis tools, even at the commercial level, have very high false-positive rates. Numerous user studies
have proved that an analysis whose false-positive rate is too high becomes unusable because developers
are forced to spend large amounts of time to filter out spurious issues, and when the false-positive rate
is excessive, the effort becomes unbearable. Therefore, in order to reduce the number of false positives,
a static analysis has to be very precise. Unfortunately, however, precision is in conflict with the analysis’
performance and scalability, requiring a more refined model of the application and analysis thereof. A
large body of research work has studied how to increase the precision of static-analysis tools without
affecting their scalability. At the same time, applications have become increasingly more complex,
with the addition of frameworks and dynamically loaded components, thereby making the compromise
between precision and scalability even more difficult to reach. This chapter proposes Phoenix, a novel
solution that combines static program analysis with machine learning. The idea behind Phoenix is to use
relatively scalable static analysis to approximate possible program behaviors, and to then apply machine
learning in order to identify programs exhibiting suspicious sequences of operations. This solution has
been widely applied to mobile applications obtaining impressive results, with low false-positive and
false-negative rates.

Phoenix comprises two components: a novel static analyzer, which performs demand-driven pointer
analysis and lends itself to modular reasoning, and a machine-learning engine, which acts on the results
of the static analyzer and filters out the majority of the false positives, while retaining almost the totality
of the true positives. These two components are described in the remainder of this chapter.

69



25 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/combining-static-code-analysis-and-machine-

learning-for-automatic-detection-of-security-vulnerabilities-in-mobile-
apps/169677

Related Content

Analysis of the Current Situation and Characteristics of College Student “Online Fraud Cases”
Mingyue Qiuand Yitao Yang (2021). International Journal of Mobile Computing and Multimedia
Communications (pp. 56-73).
www.irma-international.org/article/analysis-of-the-current-situation-and-characteristics-of-college-student-online-fraud-
cases/277232

Research on Soft Computing Techniques for Cognitive Radio

Subhashree Mishra, Sudhansu Sekhar Singh, Bhabani Shankar Prasad Mishraand Prabin Kumar Panigrahi
(2016). International Journal of Mobile Computing and Multimedia Communications (pp. 53-73).
www.irma-international.org/article/research-on-soft-computing-techniques-for-cognitive-radio/16 1756

A Survey of Mobile Computing Devices and Sensors in Healthcare Applications: Real-Time
System Design

Narayana Moorthi M.and Manjula R. (2018). Contemporary Applications of Mobile Computing in
Healthcare Settings (pp. 51-57).
www.irma-international.org/chapter/a-survey-of-mobile-computing-devices-and-sensors-in-healthcare-

applications/204691

An End-to-End Network Evaluation Method for Differentiated Multi-Service Bearing in VPP
Wangiao Wang, Jian Su, Hui Zhang, Luyao Guan, Qingrong Zheng, Zhuofan Tangand Huixia Ding (2024).
International Journal of Mobile Computing and Multimedia Communications (pp. 1-16).
www.irma-international.org/article/an-end-to-end-network-evaluation-method-for-differentiated-multi-service-bearing-in-
vpp/340381

Analysis of Sensors’ Coverage through Application-Specific WSN Provisioning Tool

Sami J. Habib (2011). International Journal of Mobile Computing and Multimedia Communications (pp. 51-
62).

www.irma-international.org/article/analysis-sensors-coverage-through-application/51661



http://www.igi-global.com/chapter/combining-static-code-analysis-and-machine-learning-for-automatic-detection-of-security-vulnerabilities-in-mobile-apps/169677
http://www.igi-global.com/chapter/combining-static-code-analysis-and-machine-learning-for-automatic-detection-of-security-vulnerabilities-in-mobile-apps/169677
http://www.igi-global.com/chapter/combining-static-code-analysis-and-machine-learning-for-automatic-detection-of-security-vulnerabilities-in-mobile-apps/169677
http://www.irma-international.org/article/analysis-of-the-current-situation-and-characteristics-of-college-student-online-fraud-cases/277232
http://www.irma-international.org/article/analysis-of-the-current-situation-and-characteristics-of-college-student-online-fraud-cases/277232
http://www.irma-international.org/article/research-on-soft-computing-techniques-for-cognitive-radio/161756
http://www.irma-international.org/chapter/a-survey-of-mobile-computing-devices-and-sensors-in-healthcare-applications/204691
http://www.irma-international.org/chapter/a-survey-of-mobile-computing-devices-and-sensors-in-healthcare-applications/204691
http://www.irma-international.org/article/an-end-to-end-network-evaluation-method-for-differentiated-multi-service-bearing-in-vpp/340381
http://www.irma-international.org/article/an-end-to-end-network-evaluation-method-for-differentiated-multi-service-bearing-in-vpp/340381
http://www.irma-international.org/article/analysis-sensors-coverage-through-application/51661

