
 2557

�
����!���
'�������	
���
'��%������*�	��
��
�����������

Martin Gaedke
University of Karlsruhe, Germany

Martin Nussbaumer
University of Karlsruhe, Germany

Emma Tonkin
University of Karlsruhe, Germany

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

As an emerging technology, the Web is full of unique
challenges for developers, designers – and engineers. Its
use for increasingly complex applications such as e-
commerce and banking, involving connection to many
data sources, highlighted a number of common difficul-
ties. During the design phase, good modeling of complex
sites is difficult; during implementation, the design mod-
els are often found to be difficult to translate into an
implementation model; afterwards, maintenance and long-
term management of the site’s evolution offer problems of
their own. Qualities such as integrity, security, and us-
ability are often afterthoughts, or left unconsidered –
most particularly during the site’s post-deployment evo-
lution. Many organizations working for the Web still use
ad-hoc, chaotic development and maintenance methods,
even though the issues surrounding development are
now widely known.

Solving these issues called for software engineering
– a discipline covering design, development and use of
computer software (Weik, 1989) – to be applied to the
Web. Researchers in the field noticed a gap between the
granularity of design models and that of implementation
models for the Web (Gellersen, Wicke & Gaedke 1997) –
that is to say, the models that worked best for designers
did not provide the right levels of detail for the implemen-
tation stage.

BACKGROUND

Software engineering approaches have been brought to
the Web through design models especially suited for
Web and other hypermedia technologies, for example
OOHDM (Schwabe, Rossi & Barbos, 1996), RMM
(Isakowitz, Stohr & Balasubramaninan, 1995), and UML
(Conallen, 1999). Nevertheless, the lack of representation
of higher-level concepts in the implementation remains.

A proposed solution to this issue came from compo-
sitional design and reuse, a concept from the software
engineering domain within which components are de-
signed such that they may be reused as building blocks.
An application may then be developed – composed – from
the available components. Should additional components
be required, they are developed; they may then be reused
in future compositions. This concept resulted in a new
sub-discipline: component-based Web engineering
(CBWE) (Gaedke & Turowski, 2002).

Components seem to solve the granularity problem, as
components can be described in whatever granularity
suits both parties. For example, a component might repre-
sent a formatted paragraph of text, a navigational menu,
an active component such as a calendar – or a single link.
Components can represent a workflow as a set of pages,
forms, and underlying “business logic”. Once developed,
such components can be stored and reused. Components
can even represent an assemblage of smaller components.

The advantages of this approach, christened the
WebComposition approach (Gaedke, 2000), were demon-
strated by the development of proof-of-concept language
WCML, the Web-Composition Markup Language
(Gaedke, Schempf & Gellersen, 1999), which offers a
convenient way to define and represent components. It
uses the eXtensible Markup Language (XML), an almost
ubiquitous standard, for this purpose. WCML permits
XML-based definition of components, associated typed
attributes (name-value pairs) referred to as properties,
and relationships between components. Components are
stored in a repository, a dedicated data store, and referred
to by a unique ID (UUID). These component assemblies
provide WebComposition services or in short services –
for example, an ordering service is made up of a form
interface and a product database. Additional components
provide business logic to control the order process, thus
enabling the concept of constructing Web applications
based on the services they provide. This abstract defini-
tion allows for different implementations of the

2558

Software Contracts for Component-Based Web Engineering

WebComposition service concept, for example using
components, Web services, or even the secretary phone
in the office.

WCML was developed as part of a complete approach,
which defined a disciplined procedure of composing Web
applications with components based on the
WebComposition component model (Gaedke, 2000). It is
a synthesis of a component-oriented process model with
a dedicated Web application framework, reuse manage-
ment, and dedicated component technology. The details
of the reuse model are discussed in Gaedke and Turowski
(2002).

DROWNING IN INFORMATION – AND
STARVING FOR KNOWLEDGE?

Just as in R.D. Roger’s popular quotation, one component
in a repository resembles a small needle in a big haystack.
A designer looking for an appropriate component in the
repository needs a good way to find it, so that he or she
can retrieve it using its unique ID. What methods exist to
sort or index components within a repository, and what
techniques permit components to be most usefully de-
scribed and specified?

WebComposition services, and the components of
which they are built, can be represented in several ways
that use searchable indexes to direct the user to the UUID
of likely components: controlled indexing, uncontrolled
indexing, and methods containing semantic information.
Controlled indexing refers to the use of controlled vo-
cabularies or categorizations, such as hierarchical or
taxonomical classification or faceted classification, where

objects are described by characteristic. For example, fac-
ets of this encyclopedia entry include its publication date,
the expected knowledge of its readers, and its subject
type. Uncontrolled indexing refers to methods without the
constraint of a controlled vocabulary, such as free-text
keywords added to the object’s description by a human
or a computer, or attribute-value pairs. Examples of both
are shown in Figure 1. Controlled and uncontrolled index-
ing methods were compared (Frakes & Pole, 1994) and
both were found to be useful – but, the authors con-
cluded, no single method is perfect. A good result often
comes from mixing several methods.

Unlike most types of data, components have an addi-
tional property – behavior. As elements in a software
application, they have to perform a task, and they must
work reliably and accurately – and they must interoperate
correctly with other components. In order to ensure this,
software contracts were introduced in 1988 by Meyer, as
part of the Eiffel programming language (Meyer, 1988).
Software contracts may include information on many
levels, depending on the context of the agreement;
configurable values may be negotiated as part of the
contract.

Software components are obligations to which a ser-
vice provider (a component) and a service consumer (a
client) agree. The provider guarantees that a service it
offers, under certain conditions – such as the provision
of appropriate data – will be performed to a guaranteed
quality. Furthermore, it also provides information about
certain external characteristics, such as its interfaces. The
following sections will discuss the different levels for
specifying a component, as shown in Figure 2.

Figure 1. Classifying an article

Controlled Indexing Uncontrolled Indexing

T
ype

T
opic areas

Book �
Journal �
Magazine �
Electrical Engineering �
Software Engineering �
Web Engineering �
Software contracts �
Components

Abstract: This paper discusses
development of application systems
that use the WWW. Component-based
software appears as a promising
approach…
Author: Martin Gaedke
Title: A comparison of specification
of components based on the
WebComposition component model
Date: September 2003

• May use a hierarchy: Journal� Web
Engineering � Software Contracts

• Controlled vocabulary
• Essentially covers methods of

categorizing by certain chosen
characteristics

• Free text
• Uncontrolled vocabulary
• May be structured to improve human-or

computer- readability, e.g. by attribute-
value pairs or strict syntax

T
ype

T
opic areas

Book �
Journal �
Magazine �
Electrical Engineering �
Software Engineering �
Web Engineering �
Software contracts �
Components

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-contracts-component-based-web/14652

Related Content

Investigating Web 2.0 Application Impacts on Knowledge Workers’ Decisions and Performance
Haya Ajjan, Richard Hartshorneand Scott Buechler (2012). Information Resources Management Journal

(pp. 65-83).

www.irma-international.org/article/investigating-web-application-impacts-knowledge/70600

Data Streams as an Element of Modern Decision Support
Damianos Chatziantoniouand George Doukidis (2009). Encyclopedia of Information Science and

Technology, Second Edition (pp. 941-949).

www.irma-international.org/chapter/data-streams-element-modern-decision/13688

A Case of Information Systems Pre-Implementation Failure: Pitfalls of Overlooking the Key

Stakeholders' Interests
Christoph Schneiderand Suprateek Sarker (2005). Journal of Cases on Information Technology (pp. 50-

66).

www.irma-international.org/article/case-information-systems-pre-implementation/3147

Virtual Product Development in University-Enterprise Partnership
George Dragoi, Anca Draghici, Sebastian Marius Rosuand Costel Emil Cotet (2010). Information

Resources Management Journal (pp. 43-59).

www.irma-international.org/article/virtual-product-development-university-enterprise/43720

The Application of IT for Competitive Advantage at Keane, Inc.
Mark R. Andrewsand Raymond Papp (2000). Annals of Cases on Information Technology: Applications and

Management in Organizations (pp. 214-232).

www.irma-international.org/chapter/application-competitive-advantage-keane-inc/44636

http://www.igi-global.com/chapter/software-contracts-component-based-web/14652
http://www.irma-international.org/article/investigating-web-application-impacts-knowledge/70600
http://www.irma-international.org/chapter/data-streams-element-modern-decision/13688
http://www.irma-international.org/article/case-information-systems-pre-implementation/3147
http://www.irma-international.org/article/virtual-product-development-university-enterprise/43720
http://www.irma-international.org/chapter/application-competitive-advantage-keane-inc/44636

