2425

Reuse of Formal Specifications

LauraFelice

Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Daniel Riesco
Universidad Nacional de San Luis, Argentina

INTRODUCTION

During the Rigorous Approach to Industrial Software
Engineering (RAISE) specification devel opment process,
avariety of componentsand infrastructuresarebuilt. All
of these components are not independent, but related to
one another, especially when we specify different sys-
tems into the same infrastructure. The RAISE method
(Bjorner, 2000) is based on the idea that software devel-
opment is a stepwise, evolutionary process of applying
semantics-preserving transitions. Thus, the reuse pro-
cessiscrucial inall of the stages of the devel opment, but
thereisno explicit referenceto the specification reusabil -
ity in this development process.

Software componentsaretypically very richininfor-
mation, making thetask of characterizing themand captur-
ingtheir relevant propertiesdifficult. However, thisisnot
theonly reason that makessoftwarereusedifficult. Krueger
(1992) providesabrief general survey and very clear view
of different approaches for software reuse.

Information retrieval methods based on analyses of
natural -language documentation have been proposed to
construct softwarelibraries(Helm & Maarek, 1991; Maarek,
Berry & Kaiser,1991). Software componentsrepresented
by natural language can maketheretrieval processatask
with ambiguity, incompleteness and inconsistency. Us-
ing arigorous method to theretrieval of acomponent can
minimizeall of these problems.

Based on these observations, we introduce a Reus-
able Component (RC) model for the definition of the
reusablecomponent structureinto RAISE. Related tothis
method, it isimportant to emphasize thework of Beltaifa
and Moore (2001). They propose an infrastructure to
support reuse improving the efficiency of reusing soft-
ware components.

RC model integrates RAISE Specification Language
(RSL) specifications (George et al., 1992) and object-
oriented code. RC model describesobject-oriented classes
at different levels of abstraction:

. Specialization: hierarchiesof RSL implicit specifica-
tionsrelated by formal specialization relationship.

. Realization: hierarchiesof RSL completealgebraic
specificationsrelated by realization relationship.

. Code: hierarchies of imperative RSL schemes re-
lated by implementation relationship and linked to
object-oriented code.

Also, arigorousprocessfor reusability of RC compo-
nentsisdefined. Its manipul ation, by means of specifica-
tion building operators (Rename, Extend, Combine and
Hide), isthe basis for the reusability.

Our approach allows that the properties of compo-
nentsformally specified can be characterized by giving a
functional (RSL specification) description. Therefore, they
may be useful to someone searching for a particular
component.

Different possible classesof existing RC components
may be retrieved using aformal reasoning technique: an
exact match to thequery specification, acomponent more
general thanthequery, or acomponent more specificthan
the query.

BACKGROUND

Different approaches to specify reusable components
functionalitieshave been proposed. Theway inwhichthe
components can be used with others can play a critical
roleinthereuseimplementation.

Related with the RAISE method, we emphasize the
work of Beltaifa. They propose an infrastructure to sup-
port reuse which improve both the ease and efficiency of
reusing software components. The main difference with
our work isthe integrated process defined for all stages
of the development method.

Asatypical related work, we can mention Hennicker
and Wirsing (1992) who present a model for reusable
component definition. A reusable component is defined
as an unordered tree of specifications where any two
consecutive nodes are related by the implementation
relation and the leaves are different implementations of
theroot. The work of Chen and Cheng (1997) is another
approach that provides a formalism to register compo-

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of I1GI is prohibited.




nents properties to reuse them based on the architecture
andintegration of thesystem. They arerelatedtoLOTOS
toolstofacilitatetheretrieval of thereusablecomponent.

On the other hand, the work of Zaremski and Wing
(1997) isrelated to the specification matching. It isvery
important to emphasizethisproposal hasbeenreferenced
by alot of authors.

There are two main activities in the RAISE method:
writinganinitial specification, and developing it towards
something that can be implemented in a programming
language (George, 2002). Writing theinitial specification
isthe most critical task in software development. If itis
wrong, that is, if it fails to meet the requirements, the
followingwork will belargely wasted. Itiswell knownthat
mistakes made in the life-cycle are considerably more
expensive to fix than those made | ater.

What kinds of errors are made at the beginning? The
main problem isthat we may not understand the require-
ments. Therequirementsarewritteninanatural |language,
and, as aresult, likely to be ambiguous. The aim of the
initial specification is to capture the requirementsin a
formal and preciseway.

MAIN THRUST OF RAISE AND
REUSE

Theaim of the project RAISE wasto devel op alanguage,
techniques and tools that would enable industrial usage
of “forma methods” in the construction of software
systems. The results of this project include the RSL
language, which allowsustowriteformal specifications;
a method to carry out developments based on such
specifications, and a set of tools to assist in edition,
checking, transforming and reasoning about specifica-
tions.

RSL isa“widespectrum” languagethat can beapplied
at different levels of abstraction as well as stages of
development. Itincludesseveral definition stylessuchas
model-based or property-based, applicative or impera-
tive, sequential or concurrent.

A development in RAISE begins with an abstract
specification and gradually evolves to concrete imple-
mentations. The first specification isusually an abstract
applicative one, for example, functional or algebraic. A
first algebraic specification should have:

. A hierarchy of modules whose root is the system
module;

. A module containing types and attributes for the
non-dynamic identified entities; and

. The signatures of the necessary functions associ-
ated with types. These functions should be catego-
rized as generators (if the associated type or atype

2426

Reuse of Formal Specifications

dependent onit appearsintheir result types) and as
observers. Besides, preconditions should be for-
mulated for partial functions. These preconditions
areexpressed by meansof functionscalled “guards”.

Thespecification may containinvariantsexpressed as
functions.

RC Model Description

RC describes object classes at three different conceptual
levels: specialization, realization and code. These names
refer totherel ationsused tointegrate specificationsinthe
threelevels. A more detailed description can befoundin
Felice, Leonardi, Favre, and Mauco (2001).

RC Components

The specialization level describes a hierarchy of incom-
plete RSL specifications as an acyclic graph. The nodes
are related by the specialization relationship. In this
context, it must be verified that if P(x) is a property
provable about objects x of type T, then P(y) must be
verified for every object y of type S, where Sisaspecial-
izationof T.

Specialization level reconcilesthe need for precision
and completeness in abstract specifications with the
desire to avoid over-specification.

Every leaf inthespecializationlevel isassociated with
a sub-component at the realization level. A realization
sub-component is a tree of complete specifications in
RSL:

. The root is the most abstract definition.

. Theinternal nodes correspond to different realiza-
tions of the root.

. L eavescorrespond to sub-componentsat theimple-
mentationlevel.

If E1and E2 are specificationsE1 canberealized by E2
if E1 and E2 have the same signature and every model of
E2isamodel of E1 (Hennicker & Wirsing, 1992).

Adaptation of reusable components, which consumes
a large portion of software cost, is penalized by over-
dependency of components on the physical structure of
data.

The realization level allows us to distinguish deci-
sionslinked with the choice of datastructure. In RAISE,
there are four main specification style options. They are
applicativesequential, imperative sequential, applicative
concurrent and imperative concurrent (George,
Haxthausen, Hughes, Milne, Prehn, & Pedersen, 1995).
Associated with them, there are two styles: abstract and
concrete. Imperative and concrete styles use variables,



4 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/reuse-formal-specifications/14626

Related Content

Does "Out of Sight" Mean "Out of Mind"? An Empirical Investigation of the Career Advancement

Prospects of Telecommuters
Donna W. McCloskeyand Magid Igbaria (2003). Information Resources Management Journal (pp. 19-34).
www.irma-international.org/article/does-out-sight-mean-out/1238

Diffusion of E-Learning as an Educational Innovation

Petek Askarand Ugur Halici (2009). Encyclopedia of Information Science and Technology, Second Edition
(pp. 1097-1100).

www.irma-international.org/chapter/diffusion-learning-educational-innovation/13712

A Knowledge Management Approach to the Loosely Coupled Systems
Jernej Agrezand Nadja Damij (2016). Information Resources Management Journal (pp. 75-90).
www.irma-international.org/article/a-knowledge-management-approach-to-the-loosely-coupled-systems/143169

The Nomological Network and the Research Continuum

Michael J. Mastersonand R. Kelly Rainer Jr. (2009). Encyclopedia of Information Science and Technology,
Second Edition (pp. 2827-2833).
www.irma-international.org/chapter/nomological-network-research-continuum/13990

E-Learning University Networks: An Approach to a Quality Open Education

Elena Verdu Pérezand Maria Jesus Verdd Pérez (2007). Journal of Cases on Information Technology (pp.
12-25).

www.irma-international.org/article/learning-university-networks/3198



http://www.igi-global.com/chapter/reuse-formal-specifications/14626
http://www.irma-international.org/article/does-out-sight-mean-out/1238
http://www.irma-international.org/chapter/diffusion-learning-educational-innovation/13712
http://www.irma-international.org/article/a-knowledge-management-approach-to-the-loosely-coupled-systems/143169
http://www.irma-international.org/chapter/nomological-network-research-continuum/13990
http://www.irma-international.org/article/learning-university-networks/3198

