
 2297

�
#��������
����%��	������	�	�	
������ ����
+
�����

Hendrik Decker
Instituto Tecnológico de Informática, Spain

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Integrity constraints (hereafter, sometimes simply ‘con-
straints’) are formal representations of conditions for the
semantic correctness of database records. In science,
constraints are usually expressed in declarative knowl-
edge representation languages such as datalog or predi-
cate logic. In commercial databases, they are usually
expressed by distinguished SQL statements.

BACKGROUND

Integrity has always been regarded as an important issue
for database management, as attested by many early
publications (e.g., Fraser, 1969; Wilkes, 1972; Eswaran &
Chamberlin, 1975; Hammer & McLeod, 1975; Nicolas,
1978; Hammer & Sarin, 1978; Codd, 1979; Bernstein,
Blaustein & Clarke, 1980; Nicolas, 1982; Bernstein &
Blaustein, 1982); later ones are too numerous to mention.
To express database semantics as invariants, that is,
properties persisting across updates, had first been pro-
posed by Minsky (1974). Florentin (1974) suggested to
express integrity constraints as predicate logic state-
ments. Stonebraker (1975) proposed to formulate and
check integrity constraints declaratively as SQL-like que-
ries.

Referential integrity, a special case of functional de-
pendencies (Armstrong, 1974), has been included in the
1989 SQL ANSI and ISO standards (McJones, 1997). The
SQL2 standard (1992) introduced the CHECK option and
the ASSERTION construct as the most general means to
express arbitrary integrity constraints declaratively in
SQL (Date & Darwen, 1997). In the 1990s, uniqueness
constraints, foreign keys, and complex queries involving
EXISTS and NOT became common features in commercial
database products. Thus, arbitrarily general integrity
constraints could now be expressed and evaluated in
most relational databases.

Integrity constraints may involve nested quantifica-
tions over huge extents of several tables. Thus, their
evaluation can easily become prohibitively costly. Most
SQL databases offer efficient support only for the follow-
ing three simple kinds of declarative constraints:

• Domain constraints, i.e., restrictions on the permis-
sible range of scalar attribute values of tuples in
table columns, including options for default and
null values.

• Uniqueness constraints, as enforced by the
UNIQUE construct on single columns, and UNIQUE
INDEX and PRIMARY KEY on any combination of
one or several columns in a table, preventing mul-
tiple occurrences of values or combinations thereof.

• Foreign key constraints, for establishing an identity
relationship between columns of two tables. For
instance, a foreign key on column emp of relation
works_in may require that each emp value of
works_in must occur in the emp_id column of table
employee, where the referenced columns (here,
emp_id) must be a primary key.

For more general constraints, SQL database manuals
usually ask the designer to renounce declarative con-
structs and instead resort to procedural triggers and
stored procedures. However, declarativity does not need
to be sacrificed in order to obtain efficiency. One ap-
proach developed to that end, in the framework of predi-
cate logic and datalog, was soundcheck (Decker, 1986). In
the spirit of the latter, a translation of integrity constraints
expressed in predicate logic into SQL is described in
Decker (2003).

SIX PHASES OF SIMPLIFIED
INTEGRITY CHECKING

Below, the soundcheck approach for simplifying the evalu-
ation of integrity constraints is outlined as a succession
of six phases. Except Step I, proposed in Decker (1987),
this approach originates in Nicolas (1982). All or part of
it is used in one way or another in most known methods
for integrity checking. It can be easily implemented in SQL
(Decker, 2003). In the next section of this article, Steps I-
VI are illustrated with an example. The six phases are then
discussed in general.

2298

Principles of Advanced Integrity Checking

I Generate the difference between the old and the new
state

II Skip idle updates
III Focus on relevant integrity constraints
IV Specialize relevant constraints
V Optimize specialized constraints
VI Evaluate optimized constraints

AN EXAMPLE OF SIMPLIFIED
INTEGRITY CHECKING

For illustrating Steps I-VI, consider an update of a rela-
tional database with tables for workers and managers,
defined as follows.

CREATE TABLE(worker(CHAR name, CHAR department))
CREATE TABLE(manager (CHAR name)).

Now, suppose there is an integrity constraint requir-
ing that no worker is a manager, expressed by the SQL
condition:

NOT EXISTS (SELECT
*
 FROM worker, manager WHERE

worker.name = manager.name).

If the number of workers and managers is large, then
checking whether this constraint is violated or not can be
very costly. The number of facts to be retrieved and tested
is in the order of the cardinality of the cross product of
worker and manager, whenever the constraint is checked.
Fortunately, however, the frequency and amount of ac-
cessing stored facts can be significantly reduced by
taking Steps I-VI. Before walking through them, a possible
objection at this stage needs to be dealt with.

SQL programmers might feel compelled to point out
that the constraint above is probably much easier checked
by a trigger such as:

CREATE TRIGGER ON worker FOR INSERT :
IF EXISTS
(SELECT * FROM inserted, manager WHERE
inserted.name = manager.name)
ROLLBACK.

Its evaluation would only need to access manager
and a cached relation inserted containing the row to be
inserted to worker, but not the stored part of worker.
However, it is easily overlooked that the sample integrity
constraint also requires implicitly that somebody who is
promoted to a manager must not be a worker, thus neces-
sitating a second trigger for insertions into manager. In
general, each occurrence of each atom occurring in a

constraint requires a separate trigger, and it is by far not
always as obvious as in the simple example above how
they should look like. Apart from being error-prone, hand-
coded triggers may also bring about unpredictable effects
of mutual interactions that are hard to control. Hence,
hand-coding triggers, as recommended in many database
manuals, hardly seem advisable.

Now, let INSERT INTO worker VALUES (‘Fred’,
‘sales’) be an update. Then, running Steps I through VI
means the following:

I Generate difference between old and new state
The explicit update INSERT INTO worker VALUES

(‘Fred’, ‘sales’) may have implicit update consequences
on database views, the definition of which involves
worker. The set of explicitly and implicitly updated facts
constitutes the difference ∆ between old and new data-
base state. Each fact in ∆ may violate integrity. Thus, ∆
must be generated, and each fact in ∆ needs to be run
through Steps II-VI. For example, suppose a view contain-
ing all workers entitled to some benefit, for example, if they
work in some distinguished department d, and a con-
straint C on that view. Then, C needs to be evaluated only
if Fred’s department is d; otherwise, no additional con-
straint needs to be checked.

II Skip idle updates
If Fred already has been a worker (e.g., in some other

department) before the INSERT statement was launched,
then it is not necessary to check again that he must not be
a manager, since that constraint has already been satis-
fied before.

III Focus on relevant integrity constraints
Unless II applies, the constraint that no worker must

be manager is clearly relevant for the given update and
hence must be checked. Any integrity constraint that is
not relevant for the insertion of rows into the worker table
needs not be checked. For instance, a constraint requiring
that each department must have some least number of
workers is not relevant for insertions, but only for dele-
tions in the worker table. Also, constraints that do not
involve worker need not be checked.

IV Specialize relevant constraints
For the given INSERT statement, the WHERE clause

of the SQL condition:

EXISTS (SELECT * FROM worker, manager WHERE
worker.name = manager.name)

can be specialized to a much less expensive form:

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/principles-advanced-database-integrity-

checking/14602

Related Content

Managing Multiple Projects
Daniel M. Brandon (2006). Project Management for Modern Information Systems (pp. 351-384).

www.irma-international.org/chapter/managing-multiple-projects/28190

Developing an Information Security Risk Taxonomy and an Assessment Model using Fuzzy Petri

Nets
Dhanya Pramodand S. Vijayakumar Bharathi (2018). Journal of Cases on Information Technology (pp. 48-

69).

www.irma-international.org/article/developing-an-information-security-risk-taxonomy-and-an-assessment-model-using-

fuzzy-petri-nets/207366

Virtual Corporations
Sixto Jesús Arjonilla-Domínguezand José Aurelio Medina-Garrido (2009). Encyclopedia of Information

Science and Technology, Second Edition (pp. 3992-3996).

www.irma-international.org/chapter/virtual-corporations/14174

Learning-Supported Decision-Making: ICTs as Feedback Systems
Elena P. Antonacopoulouand K. Nadia Papamichail (2008). Information Communication Technologies:

Concepts, Methodologies, Tools, and Applications (pp. 1066-1082).

www.irma-international.org/chapter/learning-supported-decision-making/22721

A Hybrid Context Aware Recommender System with Combined Pre and Post-Filter Approach
Mugdha Sharma, Laxmi Ahujaand Vinay Kumar (2019). International Journal of Information Technology

Project Management (pp. 1-14).

www.irma-international.org/article/a-hybrid-context-aware-recommender-system-with-combined-pre-and-post-filter-

approach/238842

http://www.igi-global.com/chapter/principles-advanced-database-integrity-checking/14602
http://www.igi-global.com/chapter/principles-advanced-database-integrity-checking/14602
http://www.irma-international.org/chapter/managing-multiple-projects/28190
http://www.irma-international.org/article/developing-an-information-security-risk-taxonomy-and-an-assessment-model-using-fuzzy-petri-nets/207366
http://www.irma-international.org/article/developing-an-information-security-risk-taxonomy-and-an-assessment-model-using-fuzzy-petri-nets/207366
http://www.irma-international.org/chapter/virtual-corporations/14174
http://www.irma-international.org/chapter/learning-supported-decision-making/22721
http://www.irma-international.org/article/a-hybrid-context-aware-recommender-system-with-combined-pre-and-post-filter-approach/238842
http://www.irma-international.org/article/a-hybrid-context-aware-recommender-system-with-combined-pre-and-post-filter-approach/238842

