
1440

�����������
,-�������
��
�
����������

��������
������

Amita Goyal Chin
Virginia Commonwealth University, USA

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Recent years have witnessed an increasing trend in the
implementation of distributed database management sys-
tems (DDBMSs) for more effective access to information.
An important quality of these systems, consisting of n
servers loosely connected via a communication network,
is to adjust to changes in workloads. To service increases
in demand, for example, additional servers may be added
to the existing distributed system and new data alloca-
tions computed. Conventionally, this requires a system
shutdown and an exhaustive data reallocation. Such static
methods are not practical for most organizations for these
methods result in high costs and in periods of data
unavailability.

We present the incremental growth framework to ad-
dress incremental expansion of distributed database sys-
tems. Data is reallocated using one of two data realloca-
tion heuristics—Partial REALLOCATE or Full REALLO-
CATE. Both heuristics are greedy, hill-climbing algo-
rithms that compute new data allocation based on the
specified optimization parameter of the objective cost
function. Due to their linear complexity, both heuristics
can be used to solve both small and large complex prob-
lems, based on organizational needs. The REALLOCATE
algorithms in conjunction with the SimDDBMS simulator
can be used to answer many practical questions in distrib-
uted database systems. For example, in order to improve
system response time, a database administrator (DBA)
may use SimDDBMS for parametric evaluation. For ex-
ample, the DBA may analyze the effect of upgrading CPU
processing capability, increasing network transfer speed,
or adding additional servers into the distributed database
system. Furthermore, SimDDBMS may easily be modified
to evaluate heterogeneous servers with different CPU
processing capabilities. A DBA may also use SimDDBMS
to determine the impact and cost-benefit analysis of
adding some number, s ≤ 1, additional servers at one time.

BACKGROUND

Following the pioneering work in Porcar (1982), many
researchers have studied the file or data allocation prob-
lem (Daudpota, 1998; Ladjel, Karlapalem, & Li, 1998; So,

Ahmad, & Karlapalem, 1998; Tamhankar & Ram, 1998;).
Since optimal search methods can only be used for small
problems, heuristic methods are often used for solving
large data allocation problems (Apers, 1988; Blankinship,
1991; Ceri, Navathe, & Wiederhold, 1983; Chin, 2001;
(Chin) Goyal, 1994; Du & Maryanski, 1988). Researchers
have studied both the static data allocation problem, in
which data allocations do not change over time, and the
dynamic data allocation problem (Brunstrom,
Leutenegger, & Simha, 1995; Theel & Pagnia, 1996;
Wolfson, Jajodia, & Huang, 1997), which may be adaptive
or nonadaptive. Adaptive models (Babcock, Babu,
Motwani, & Datar, 2003; Levin, 1982; Levin & Morgan,
1978; Son, 1988) are implemented when the system senses
a substantial deviation in access activities; these models
determine a one-time reallocation (for a relatively short
period of time) in response to surges in demand. For
example, the volume of reservations for a particular airline
route may increase during a specific season. Therefore, an
airline reservation system may temporarily store addi-
tional copies of the files associated with the route at a local
server. However, this is a short-term situation, which is
resolved by introducing replicated file copies.
Nonadaptive models (Levin; Porcar; Segall, 1976) are
employed at the initial system design stage or upon
system reorganization; these models do not adjust to
variations in system activities.

Most previous research on data allocation assumes a
fixed number of servers in the distributed database sys-
tem (Carey & Lu, 1986; Chu, 1969; Laning & Leonard, 1983;
Lee & Liu Sheng, 1992; Rivera-Vega, Varadarajan, &
Navathe, 1990). Experiments and simulations are designed
to test DDBMS factors such as the degree of data repli-
cation, workloads per server, and different levels and
classes of queries and transactions (Carey & Lu; Ciciani,
Dias, & Yu, 1990). Simulation runs vary the number of
servers to arbitrary values. However, these values are
fixed per run and vary only between runs.

INCREMENTAL GROWTH
FRAMEWORK

The incremental growth framework is invoked when sys-
tem performance, as computed using the objective cost

 1441

Incremental Expansion of a Distributed Database System

�
function, is below the acceptable threshold (specified by
the DBA). To return to an acceptable state, new servers
are introduced incrementally, one at a time, into the
distributed database system. With the introduction of
each new server, a new data reallocation for the system is
computed. This process is iteratively executed until ac-
ceptable performance is achieved or the number of servers
equals the number of relations in the distributed database
system (the latter constraint can easily be relaxed in a
distributed database system housing partitioned data).
The incremental growth framework, which can easily be
adapted for one-server or multiple-server systems, can be
used by small, midsize, and large organizations, each
having distributed database systems of varying size. In
one-server systems, the initial data allocation locates all
relations at the server. In multiple-server systems, the
current data allocation is required as input into the frame-
work. Additional input information required for the incre-
mental growth framework includes: the database server or
servers, including the local processing capacity; the
network topology, including transmission capacity; the
database relations, including relation sizes and selectivi-
ties; the query set; the optimization parameter; and the
acceptable threshold for the optimization parameter.

DEFINITIONS

The relational data model is used to describe the data and
query processing on the data. Only simple queries are
considered. Queries are assumed to be independent and
are solved independently. Queries are processed in par-
allel in the distributed database system. To simplify the
estimation of query result sizes, the concept of selectivity
(Blankinship, 1991; Chin, 1999; Date, 1991; (Chin) Goyal,
1994) is utilized. Attribute values are assumed to be
uniformly distributed, and each attribute in a relation is
assumed to be independent of all other attributes in the
database. The simple query environment has been chosen
because it has a manageable complexity while remaining
realistic and interesting.

The parameters describing the simple query environ-
ment are (Blankinship, 1991; Chin, 1999; (Chin) Goyal,
1994; Hevner & Yao, 1979):

S
i
: Network Servers, i = 1, 2, ..., s, s+1 (S

s+1
 = the new

server joining the system),
R

j
: Relations, j = 1, 2, ..., r

For each relation R
j
, j = 1, 2, ..., r:

n
j
: number of tuples,

a
j
: number of attributes,

β
j
: size (in bytes)

For each attribute d
jk
, k = 1, 2, ..., a

j
 of relation R

j
:

p
jk
: attribute density, the number of different values in

the current state of the attribute divided by the number of
possible attribute values. So, 0 <= p

jk
 <= 1 (Hevner & Yao,

1979). During join operations the density is used as a
selectivity coefficient.

w
jk
: size (in bytes) of the data item in attribute d

jk

For local transaction processing, each server in the
distributed database system maintains a queue of incom-
ing requests. Queries are maintained in queue until they
are processed using a first in, first out (FIFO) order.

Finally, the distributed database system maintains a
centralized data dictionary housing the following infor-
mation (Blankinship, 1991; (Chin) Goyal, 1994; Hevner &
Yao, 1979):

• for each relation R
j
, j = 1, 2, ..., r: n

j
, a

j
, β

j
, and S

j
 (server

to which relation R
j
 is allocated)

• for each attribute d
k
, k = 1, 2, ..., a

j
 of relation R

j
: p

jk
,

w
jk
, and b

jk
 (projected size, in bytes, of attribute d j

k

with no duplicate values)

Optimizing query strategies is not within the scope of
this research. However, since the optimal data allocation
is dependent on the implemented query strategy, when
computing new data allocations, Algorithm Serial (Hevner
& Yao, 1979) for query processing is implemented. Any
query optimization algorithm from the research literature,
however, can be used in place of Algorithm Serial.

Algorithm Serial (Hevner & Yao, 1979) considers serial
strategies to minimize total transmission time in the simple
query environment. For each query q accessing ψ rela-
tions, there are ψ! possible combinations for processing
q. The serial strategy consists of transmitting each rela-
tion, starting with R

1
, to the next relation in a serial order.

The strategy is represented by R
1
 → R

2
 → … → Rσ, where

σ is the number of relations in the query (Hevner & Yao,
1979).

Consider, for example, a query which accesses rela-
tions A, B, and C. Then, the ψ! = 6 processing combina-
tions for the query are: A → B → C, A → C → B, B → A
→ C, B → C → A, C → A → B, C B → A. Therefore, given
four queries—two of which access two relations, one of
which accesses three relations, and one of which ac-
cesses four relations—the number of possible serial strat-
egy combinations is (2!)(2!)(3!)(4!) = (2)(2)(6)(24) = 576.
The serial order is computed so that β

1
 ≤ β

2
 ≤ … ≤ β

s
, where

β
j
 is the size of relation R

j
, j = 1, ..., r (Hevner & Yao, 1978).

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/incremental-expansion-distributed-database-

system/14452

Related Content

ICT and the Virtual Organisation
Carmen de Pablos Heredero (2009). Encyclopedia of Information Communication Technology (pp. 365-

370).

www.irma-international.org/chapter/ict-virtual-organisation/13380

Suspicious Behavior Detection in Debit Card Transactions using Data Mining: A Comparative

Study using Hybrid Models
Ehsan Sagheheiand Azizollah Memariani (2015). Information Resources Management Journal (pp. 1-14).

www.irma-international.org/article/suspicious-behavior-detection-in-debit-card-transactions-using-data-mining/128972

Using Pattern Recognition in Decoding Hazard Analysis and Critical Control Points (HACCP) for

Quality Assurance: The Case for a Start-up Company
Rahul Bhaskarand Au Vo (2014). Journal of Cases on Information Technology (pp. 60-72).

www.irma-international.org/article/using-pattern-recognition-in-decoding-hazard-analysis-and-critical-control-points-

haccp-for-quality-assurance/109518

Measures of the Effectiveness of IT
Han van der Zee (2002). Measuring the Value of Information Technology (pp. 80-92).

www.irma-international.org/chapter/measures-effectiveness/26177

Managing the Integrated Online Marketing Communication
Calin Gurau (2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 2517-

2524).

www.irma-international.org/chapter/managing-integrated-online-marketing-communication/13938

http://www.igi-global.com/chapter/incremental-expansion-distributed-database-system/14452
http://www.igi-global.com/chapter/incremental-expansion-distributed-database-system/14452
http://www.irma-international.org/chapter/ict-virtual-organisation/13380
http://www.irma-international.org/article/suspicious-behavior-detection-in-debit-card-transactions-using-data-mining/128972
http://www.irma-international.org/article/using-pattern-recognition-in-decoding-hazard-analysis-and-critical-control-points-haccp-for-quality-assurance/109518
http://www.irma-international.org/article/using-pattern-recognition-in-decoding-hazard-analysis-and-critical-control-points-haccp-for-quality-assurance/109518
http://www.irma-international.org/chapter/measures-effectiveness/26177
http://www.irma-international.org/chapter/managing-integrated-online-marketing-communication/13938

