
1108

���
�������
��)�����
��������&*+
���&��
��
�
�
��
�
�
	�

Peretz Shoval
Ben-Gurion University, Israel

Judith Kabeli
Ben-Gurion University, Israel

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Background on Traditional Approach
to Information System Development

Many paradigms for system analysis and design have
been proposed over the years. Early approaches have
advocated the functional approach. Common methodolo-
gies that support this approach are SSA and SSD
(DeMarco, 1978; Yourdon & Constantine, 1979). SSA is
based on the use of data flow diagrams (DFDs), which
define the functions of the system, the data stores within
the system, the external entities, and the data flows among
these components. Early SSA and similar methodologies
emphasized the functional aspects of system analysis,
neglecting somehow the structural aspects, namely the
data model. This was remedied by enhancing those meth-
odologies with a conceptual data model, usually the
entity-relationship (ER) model (Chen, 1976), that is used
to create a diagram of the data model, which is later
mapped to a relational database schema.

SSD is based on the use of structure charts (SCs),
which describe the division of the system to program
modules as well as the hierarchy of the different modules
and their interfaces. Certain techniques have been pro-
posed to create SCs from DFDs (Yourdon & Constantine,
1979). The main difficulty of an approach where functional
analysis is followed by structured design lies in the
transition from DFDs to SCs. In spite of various guidelines
and rules for conversion from one structure to the other,
the problem has not been resolved by those methodolo-
gies (Coad & Yourdon, 1990).

Shoval (1988, 1991) developed the ADISSA method-
ology that solved this problem. It uses hierarchical DFDs
during the analysis stage (similar to other functional
analysis methodologies), but the design centers on trans-
actions design. A transaction is a process that supports
a user who performs a business function, and is triggered
as a result of an event. Transactions will eventually
become the application programs. Transactions are iden-

tified and derived from DFDs: A transaction consists of
elementary functions (namely functions which are not
decomposed into sub-functions) that are chained through
data flows; and of data stores and external entities that are
connected to those functions. A transaction includes at
least one external entity, which serve as its trigger. The
process logic of each transaction is defined by means of
structured programming techniques, for example pseudo-
code. Based on the hierarchical DFDs and the transac-
tions, ADISSA provides structured techniques to design
the user-system interface (a menus-tree), the inputs and
outputs (forms and reports), the database schema, and
detailed descriptions of the transactions, which will even-
tually become the application programs. The menus-tree
is derived from the hierarchy of DFDs in a semi-algorith-
mic fashion, based on functions that are connected to
user-entities. The design of the forms and reports is based
on data flows from user-entities to elementary functions
and from elementary functions to user-entities. The de-
sign of the relational database schema is based on the
analysis of dependencies among the data elements within
the data-stores. The data flows from elementary functions
to data stores and from data stores to elementary func-
tions serve as a basis for defining access steps, namely
update and retrieval operations on the relations. Access
steps are expressed as SQL statements that will be embed-
ded in the program code of the respective transactions.
The products of the design stages can be easily imple-
mented using various programming environments.

Background on Object-Oriented
Approach to Information System
Development

The development of object-oriented (OO) programming
languages gave rise to the OO approach and its penetra-
tion into system analysis and design. Many OO method-
ologies have been developed in the early 90s (e.g., Booch,
1991; Coad & Yourdon, 1990, 1991; Jacobson, 1992;
Rumbaugh, Blaha, Premerlani, Eddy & Lorensen, 1991;

 1109

Essentials of Functional and Object-Oriented Methodology

�

�

Shlaer & Mellor, 1992; Wirfs-Brock, 1990). In the OO
approach the world is composed of objects with attributes
(defining its state) and behavior (methods), which consti-
tute the only way by which the data included in the object
can be accessed. When using the OO approach, a model
of the system is usually created in the form of a class
diagram consisting of data classes with structural rela-
tionships between them (e.g., generalization-specializa-
tion), and each class having its attributes and methods.

While there are no doubts about the advantages of the
OO approach in programming, as it supports information
hiding (encapsulation), software reuse and maintenance,
there are doubts with respect to the effectiveness of the

approach for analyzing business-oriented information
systems (as opposed to real-time systems). The early OO
methodologies tended to neglect the functionality aspect
of system analysis, and did not show clearly how to
integrate the application functions (transactions) with
the class diagram. Another difficulty with those method-
ologies was that they involved many types of non-stan-
dard diagrams and notations.

The multiplicity of diagram types in the OO approach
has been a major motivation for developing the UML
(Booch et al., 1999; Clee & Tepfenhart, 1997; Fowler, 1997;
Larman, 1998; Maciaszek, 2001; UML-Rose, 1998). UML
provides a standard (“unified”) modeling language. It

Figure 1. The initial class diagram of Music Programs system

6 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/essentials-functional-object-oriented-

methodology/14394

Related Content

Improving Virtual Teams through Creativity
Teresa Torres-Coronasand Mila Gasco-Hernandez (2005). Encyclopedia of Information Science and

Technology, First Edition (pp. 1419-1424).

www.irma-international.org/chapter/improving-virtual-teams-through-creativity/14449

Business Process Management in the Classroom
Ashwini Sarvepalliand Joy Godin (2017). Journal of Cases on Information Technology (pp. 17-28).

www.irma-international.org/article/business-process-management-in-the-classroom/181071

Information Technology Usage in Nigeria
Isola Ajiferukeand Wole Olatokun (2005). Encyclopedia of Information Science and Technology, First

Edition (pp. 1508-1512).

www.irma-international.org/chapter/information-technology-usage-nigeria/14464

Research on Hybrid Immune Algorithm for Solving the Location-Routing Problem With

Simultaneous Pickup and Delivery
Xiaowei Wang (2022). Journal of Cases on Information Technology (pp. 1-17).

www.irma-international.org/article/research-hybrid-immune-algorithm-solving/295253

Interface Design Issues for Mobile Commerce
Susy S. Chanand Xiaowen Fang (2005). Encyclopedia of Information Science and Technology, First

Edition (pp. 1612-1617).

www.irma-international.org/chapter/interface-design-issues-mobile-commerce/14483

http://www.igi-global.com/chapter/essentials-functional-object-oriented-methodology/14394
http://www.igi-global.com/chapter/essentials-functional-object-oriented-methodology/14394
http://www.irma-international.org/chapter/improving-virtual-teams-through-creativity/14449
http://www.irma-international.org/article/business-process-management-in-the-classroom/181071
http://www.irma-international.org/chapter/information-technology-usage-nigeria/14464
http://www.irma-international.org/article/research-hybrid-immune-algorithm-solving/295253
http://www.irma-international.org/chapter/interface-design-issues-mobile-commerce/14483

