
 481

�
�
������*��������,��������������	���	
(����������,�����������

Zoran Stojanovic
Delft University of Technology, The Netherlands

Ajantha Dahanayake
Delft University of Technology, The Netherlands

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

One of the main challenges enterprises face today is how
to manage complexity of systems being developed, effec-
tively utilize the power of the Internet, and be able to
rapidly adapt to changes in both technology and busi-
ness. The new paradigm of component-based develop-
ment (CBD) has been introduced as an excellent solution
for building complex Internet-enabled enterprise informa-
tion systems (Brown, 2000; Szyperski, 2002). The basic
idea of CBD originates from the strategy successfully
applied in other engineering disciplines that a system
developed from components is more flexible and easier to
develop. CBD provides higher productivity in system
development through reusability, more effective system
maintenance, higher quality of solutions and the possibil-
ity for parallel work. Moreover, it provides better system
adaptability through replaceability of parts, localization
and better control of changes, system scalability, and the
possibility of using legacy assets.

CBD has often been presented as a new silver bullet
for complex, enterprise-scale system development in the
Internet age (Udell, 1994). However CBD inherits many
concepts and ideas from the earlier encapsulation and
modularization, “divide-and-conquer” initiatives in infor-
mation technology (IT). The NATO Conference in 1968
recognized that producing software systems should be
treated as an engineering discipline providing system
assembling from software components (McIlroy, 1968).
Parnas (1972) defines concepts and requirements for
decomposing system into modules. These principles of
separation of concerns, encapsulation, and plug-and-
play building blocks have been applied in different ways
through the concepts of functions, subroutines, mod-
ules, units, packages, subsystems, objects, and now
components.

The CBD paradigm has been first introduced at the
level of implementation and deployment. CBD middleware
technologies, such as CORBA Components (Siegel, 2000),
Sun’s Enterprise Java Beans and Microsoft’s COM+/
.NET, are now used as standards for the development of

complex enterprise distributed systems. While the tech-
nology solutions are necessary in building the system,
one cannot simply program and deploy components us-
ing a component middleware without any prior plan to
follow from business requirements towards implementa-
tion. For the effective use of the CBD paradigm and in
order to gain real benefits of it, the component way of
thinking must be applied in earlier phases of the develop-
ment lifecycle, such as system analysis and design. CBD
methods and approaches proposed so far do not provide
a complete and consistent support for various component
concepts. Components are often treated as implementa-
tion concepts—packages of binary or source code that
can be deployed over the network nodes. During the
system analysis and design, components, if used, are
often represented as larger-grained business objects.
This suggests using components mainly at the system
implementation and deployment as software code pack-
ages, while still following the principles of object-ori-
ented modeling, analysis and design. At the same time,
the role and usefulness of the component concept as a
bridge between business and technology issues have not
been truly recognized yet. Components can be identified
very early in the system lifecycle, namely derived from
business requirements, and then used as central artifacts
of the whole development process. In this way, the whole
process would be structured and organized around the
same set of component concepts. That can provide a
necessary alignment and traceability from business ser-
vices to implementation assets. The benefit from the
separation of concerns using components will be gained
at all levels of system development.

BACKGROUND

Component technologies are now widely used in the
development of complex Internet-enabled systems. First,
VBX controls, DCOM/COM, CORBA and Java Beans, and
now COM+/.NET, CORBA Components and Enterprise
Java Beans (EJB) represent the standard component-

482

Component-Oriented Approach for Designing Enterprise Architecture

based implementation solutions. The physical perspec-
tive on components as binary packages of software is still
predominant. The standard unified modeling language
(UML) treats components as packages of binary code and
uses them in describing system implementation through
component and deployment diagrams (Booch, Rumbaugh,
& Jacobson, 1999). Components in UML represent physi-
cal things that can be deployed over network nodes. The
Catalysis approach defines a component as a package of
software code as well as other software artifacts (D’Souza
& Wills, 1999). According to Szyperski, a software com-
ponent is a unit of composition with contractually speci-
fied interfaces and explicit context dependencies
(Szyperski, 2002). A software component can be deployed
independently and is subject to composition by third
parties. Gartner Group (1997) defines a runtime software
component as a dynamically bindable package of one or
more programs managed as a unit and accessed through
documented interfaces that can be discovered at runtime.
Definition of a business-oriented component concept can
be found in Herzum and Sims (2000), where a business
component is the software implementation of an autono-
mous business concept or business process, and in
Andersen Consulting (1998), where a business compo-
nent is a means for modeling real-world concepts in the
business domain. When introducing components, the
question about similarities and differences between ob-
jects and components are naturally arising. According to
Udell (1994), components represent a new silver bullet for
system development in the Internet age, while objects
have failed to provide higher level of reusability. In the
UML, components are nothing else than larger-grained
objects deployed on the network nodes. In Szyperski
(2002), a component comes to life through objects, and
therefore, it would normally contain one or more classes,
as well as traditional procedures and even global vari-
ables. In a debate over this topic (Henderson-Sellers,
Szyperski, Taivalsaari, & Wills, 1999) granularity has
been seen as the main issue in distinguishing components
and objects. According to Catalysis, components are
often larger-grained than traditional objects, and can be
implemented as multiple objects of different classes.

The academia and industry have just started to recog-
nize the importance of new CBD methods, processes,
techniques and guidelines. The methods and approaches
are often greatly influenced by the object-oriented con-
cepts, constructs and principles, dictated by the use of
the standard UML. The Rational Unified Process (RUP)
(Jacobson, Booch, & Rumbaugh, 1999), Catalysis, and the
Select Perspective (Allen & Frost, 1998) can be consid-
ered as the first generation of the CBD methods. The
business component factory (BCF) (Herzum & Sims, 2000),
the UML components approach (Cheesman & Daniels,
2000), and the KobrA approach (Atkinson et al., 2002)

represent the second generation of the CBD methods.
These methods are more focused on components con-
cepts than previous ones. They provide a comprehensive
support to CBD throughout the system lifecycle, and
represent remarkable achievements in the field. On the
other hand, there are certain shortcomings. The analysis
and evaluation of CBD methods can be found in
Dahanayake, Sol, and Stojanovic (2003).

SERVICE-BASED COMPONENT
CONCEPT

Components have been so far used mainly as implemen-
tation artifacts. However, the components are equally
useful and important if used as modeling and design
artifacts for building the logical architecture of the system
(Stojanovic & Dahanayake, 2002). The essence of the
component approach is the explicit separation between
the outside and the inside of the component. This means
that only the question WHAT is considered (what useful
services are provided by the particular building block to
the context of its existence?) not the HOW (how are these
services actually implemented?). A component fulfills a
particular role in the context, by providing and requiring
services to/from it. A component has a hidden interior and
exposed interface. It participates in a composition with
other components to form a higher-level behavior. At the
same time, every component can be represented as a
composition of lower-level components. Well-defined
behavioral dependencies and coordination of activities
between components are of a great importance in achiev-
ing the common goal. The metamodel of the core compo-
nent concepts is shown in Figure 1.

According to the role(s) a component plays in the
given context, it exposes corresponding behavior by
providing and requiring services to/from its context, or by
emitting and receiving events. The services a component
provides and requires form the basic part of its contract.
Services can be of different types such as performing
computation, providing information, communication with
the user, and so forth. They are fully specified in a
contract-based manner using pre-conditions, post-con-
ditions and other types of constraints. A component must
handle, use, create or simply be aware of certain informa-
tion to provide its services properly. In order to be used
in a different context or to be adaptable to the changes in
its context, a component can possess configuration pa-
rameters that can adapt the component according to new
requirements coming from the outside. A component can
possess a set of non-functional parameters that charac-
terize the “quality” of its behavior. Figure 2 shows the
component specification concepts.

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/component-oriented-approach-designing-

enterprise/14284

Related Content

E-ZPass and the Ohio Turnpike: Adoption and Integration of Electronic Toll Collection
Eliot Rich (2008). Journal of Cases on Information Technology (pp. 32-51).

www.irma-international.org/article/zpass-ohio-turnpike/3216

Latin American and Caribbean Literature Transposed into Digital: Corpus, Ecosystem, Canon
Adrián R. Vila (2016). Journal of Information Technology Research (pp. 34-53).

www.irma-international.org/article/latin-american-and-caribbean-literature-transposed-into-digital/149675

Reconfiguring Information Services in the Light of the Post-Custodial, Informational, and

Scientific Paradigm of Information Science: A Case Study of the Hospital Sector
Olívia Pestana (2016). Handbook of Research on Information Architecture and Management in Modern

Organizations (pp. 96-110).

www.irma-international.org/chapter/reconfiguring-information-services-in-the-light-of-the-post-custodial-informational-

and-scientific-paradigm-of-information-science/135763

Probabilistic Method for Managing Common Risks in Software Project Scheduling Based on

Program Evaluation Review Technique
Quyet-Thang Huynhand Ngoc-Tuan Nguyen (2020). International Journal of Information Technology

Project Management (pp. 77-94).

www.irma-international.org/article/probabilistic-method-for-managing-common-risks-in-software-project-scheduling-

based-on-program-evaluation-review-technique/258553

A Systemic Framework for Business Process Modeling Combining Soft Systems Methodology

and UML
Kosheek Sewchurranand Doncho Petkov (2007). Information Resources Management Journal (pp. 46-62).

www.irma-international.org/article/systemic-framework-business-process-modeling/1320

http://www.igi-global.com/chapter/component-oriented-approach-designing-enterprise/14284
http://www.igi-global.com/chapter/component-oriented-approach-designing-enterprise/14284
http://www.irma-international.org/article/zpass-ohio-turnpike/3216
http://www.irma-international.org/article/latin-american-and-caribbean-literature-transposed-into-digital/149675
http://www.irma-international.org/chapter/reconfiguring-information-services-in-the-light-of-the-post-custodial-informational-and-scientific-paradigm-of-information-science/135763
http://www.irma-international.org/chapter/reconfiguring-information-services-in-the-light-of-the-post-custodial-informational-and-scientific-paradigm-of-information-science/135763
http://www.irma-international.org/article/probabilistic-method-for-managing-common-risks-in-software-project-scheduling-based-on-program-evaluation-review-technique/258553
http://www.irma-international.org/article/probabilistic-method-for-managing-common-risks-in-software-project-scheduling-based-on-program-evaluation-review-technique/258553
http://www.irma-international.org/article/systemic-framework-business-process-modeling/1320

