
3909

U

Category: Software & Systems Design

Use Cases in the UML
Brian Dobing
University of Lethbridge, Canada

Jeffrey Parsons
Memorial University of Newfoundland, Canada

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

The unified modeling language (UML) emerged in the
mid-1990s through the combination of previously compet-
ing object-oriented systems analysis and design methods,
including Booch (1994), Jacobson, Christerson, Jonsson,
and Overgaard (1992), Rumbaugh, Blaha, Premerlani, Eddy,
and Lorensen (1991) and others. Control over its formal
evolution was placed in the hands of the object manage-
ment group (www.omg.org), which recently oversaw a
major revision to UML 2.0 (OMG, 2005). The UML has
rapidly emerged as a standard language and notation for
object-oriented modeling in systems development, while
the accompanying unified software development process
(Jacobson, Booch, & Rumbaugh, 1999) has been developed
to provide methodological support for applying the UML in
software development.

Use cases play an important role in the unified process,
which is frequently described as “use case driven” (e.g.,
Booch et al., 1999, p. 33). The term “use case” was intro-
duced by Jacobson (1987) to refer to a text document that
outlines “a complete course of events in the system, seen
from a user’s perspective” (Jacobson et al., 1992, p. 157). The
concept resembles others being introduced around the same
time. Rumbaugh et al. (1991), Wirfs-Brock, Wilkerson, and
Wiener (1990), and Rubin and Goldberg (1992) use the terms
“scenario” or “script” in a similar way. While use cases were
initially proposed for use in object-oriented analysis and are
now part of the UML, they are not inherently object-oriented
and can be used with other methodologies.

The official UML 2.0 documentation (OMG, 2005)
includes some examples of use case diagrams, which pro-
vide an overview that shows which “actors” are involved
in each use case. However, the only indication of the “text
document” format is that “use cases are typically specified
in various idiosyncratic formats such as natural language,
tables, trees, etc.” (UML, 2005, p. 574). However, virtually
every book on the UML offers some format suggestions for
use cases (sometimes termed “use case narratives” or “use
case descriptions” to clearly distinguish them from diagrams).
Together, the use case diagram and narrative are referred to as
the “use case model.” There are now several books focusing
on use cases including Adolph and Bramble (2003), Armour

and Miller (2001), Bittner and Spence (2003), Cockburn
(2001), Denny (2005), and Övergaard and Palmkvist (2005)
along with a few Web sites, notably Cockburn’s (http://www.
usecases.org). Thus, use cases seem to be well established
within the UML despite the lack of any officially endorsed
format from the OMG.

BACKGROUND

A use case “describes the system’s behavior under various
conditions as the system responds to a request from one of
the stakeholders” (Cockburn, 2001). A use case should have
a clear goal and describe what should happen (but not how
it should happen) as users interact with the system. Com-
mon examples would include a customer renting a video,
purchasing an item, withdrawing funds from a bank account,
etc. The use case also identifies the main “actors” involved
which, in the previous examples, could include the customer,
employees (e.g., rental clerk), a device (bank machine), time
(clock), etc. The use case must provide something of value
to one or more actors; otherwise there would be no need
for it. While the main use case narrative would describe
a successful rental, purchase, or withdrawal, alternative
outcomes would handle problems such as rejected credit
cards, insufficient funds, etc.

The use case differs from typical structured requirements
analysis tools that preceded it in two important ways. First,
the use case is largely text-based (with the use case diagrams
playing a minor role). Structured analysis emphasized the
importance of graphical tools, such as work flow and data
flow diagrams. The UML has not abandoned diagrams;
thirteen are now included with UML 2. The class, activity,
communication (previously collaboration), sequence, state
machine (previously statechart), and use case diagrams have
always played important roles. But use case narratives are
text-based so that “users and customers no longer have to
learn complex notation” (Jacobson et al., 1999, p. 38).

Second, use cases focus on complete transactions,
from initiation to achievement of the defined goal, from
the user’s perspective. In particular, a use case has a goal,
which comes from the goals of those who will be using the
system (Cockburn, 2001). This keeps the focus on the key

3910

Use Cases in the UML

requirements and helps facilitate communication with the
system’s intended users. In UML terminology, a use case is
initiated by an actor, usually a person in a particular role (e.g.,
cashier) but actors can also be external systems or devices.
A single use case can involve many actors.

Consistent with an object-oriented approach, use cases
can also have generalizations and include and extend relation-
ships. Generalizations allow a child use case to override the
behavior of its parent use case in certain situations, but are
“not widely used” according to Arlow and Neustadt (2004).
An “include” relationship is generally used when the same
steps are required by several use cases (e.g., logging into a
system), in order to avoid repetition. An included use case is
dependent on base use cases and “never stands alone” (Booch
et al., 1999, p. 221). An “extend” relationship exists when
a base use case incorporates another use case depending
on certain conditions, such as exceptional situations where
including the additional detail in the base use case adds too
much complexity.

Writing use cases may seem simple enough because they
are text-based. However, as discussed in the next section,
the content and format of use cases vary somewhat among
published books and articles. Those new to use cases would
be well advised to read at least a couple of the books devoted
to use cases (referenced previously) before incorporating
them into a system development project.

ISSUES

Use cases have been all but universally embraced in object-
oriented systems analysis and development books written
since Jacobson et al. (1992). Despite this strong endorsement,
there are many variations on Jacobson’s original theme. First,
there is a difference in content. Use cases, at least during the
analysis phase, were intended to be a conceptual tool. The
use case should emphasize “what” and not “how” (Jacobson
et al., 1994, p. 146). This principle was not strictly followed
by much of the early literature, including Jacobson et al.
(1992, p. 162) who referred to a display “panel,” “receipt
button,” and “printer” in one of their previous examples.
Constantine and Lockwood (2000) distinguish “essential”
use cases containing few if any references to technology and
user interface implementation, from “concrete” use cases
that specify the actual interactions. Others make a similar
distinction using the terms “business use cases” and “system
use cases.” While this provides flexibility, developers need
to be careful about what type of content is appropriate at
any given time.

Second, there are several variations proposed for use case
formats. While the first use cases in Jacobson et al. (1992)
were written as a paragraph of text, most others have adopted
numbered steps. Soon after, Jacobson et al. (1994, p. 109)
did so as well. There also seems to be more acceptance of

including exception and error steps, which were less com-
mon in earlier books.

Third, the granularity of use cases varies from coarse
(few use cases) to fine (many). In principle, use cases should
offer “measurable value to an individual actor” (Jacobson
et al., 1994, p. 105) and “the collected use cases specify the
complete functionality of the system” (White 1994, p. 7).
But how to determine the number of use cases this requires
is not easily articulated. While Dewitz (1996) uses 11 use
cases in her video store example, the IBM object-oriented
technology center (1997) has 24. Kulak and Guiney (2000,
p. 37) suggest that “most systems would have perhaps 20
to 50 use cases and some small systems even fewer.” But,
as they later point out (p. 88), “there are no metrics estab-
lished to determine correct granularity.” Övergaard et al.
(2005, p.45) suggest the same range (20-50) for “a normal
medium-sized system.” Armour et al. (2001, p. 244) claim
that large systems may have hundreds of use cases.

Fourth, the level of detail within each use case also varies.
For example, both Kulak et al. (2000, p. 125) and Armour
et al. (2001, p. 125) recommend limiting the length of the
flow of events to two pages of text, but the latter also note
that some practitioners prefer a few longer use cases to many
short ones. Bittner et al. (2003) suggest they are typically
5 to 15 pages, but with 60 to 80% of the content handling
exception and error conditions. Jacobson et al. (1999) ad-
vocate an iterative development approach in which both the
number of use cases and their level of detail increase as the
work progresses. They suggest that only the most critical
use cases (less than 10%) be detailed in the first (inception)
phase. As analysis progresses and requirements become
firmer, additional use cases can be added and each can be
expanded to include considerably more detail. For example,
Kulak et al. (2000) have identified four levels. However,
knowing what should be a use case, how much detail is
appropriate at each phase, and when to stop are important
issues that are difficult to resolve precisely.

To further complicate the issue, some of those who favor
fewer or less detailed use cases supplement them with “sce-
narios.” Rumbaugh et al. (2005, p.579) say that “a scenario
may be used to illustrate an interaction or the execution of a
use case instance.” “Add a customer” is a use case. Adding
a specified customer with a particular name, address, etc.
is a scenario. Others use scenarios to provide further detail
on exception handling and other special cases (e.g., custom-
ers with missing, improbable, or unusual data) (Bennett,
Skelton, & Lunn, 2001) rather than alternative paths in the
use case. How many scenarios, alternate paths, and excep-
tion paths should be developed, and what their role should
be in developing class diagrams, is not clear. A minimalist
approach to use cases combined with extensive scenarios
and paths may still result in a large and very detailed set of
specifications.

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/use-cases-uml/14160

Related Content

Rethinking the Project Management Process by Using Unified Modeling Language
Liang-Cheng Chang (2015). International Journal of Information Technology Project Management (pp. 58-73).

www.irma-international.org/article/rethinking-the-project-management-process-by-using-unified-modeling-language/128209

Information Modeling in the Internet Age - Challenges, Issues and Research Directions
Keng Siauand Matti Rossi (2001). Information Modeling in the New Millennium (pp. 1-8).

www.irma-international.org/chapter/information-modeling-internet-age-challenges/22979

Comparison of Tied-Mixture and State-Clustered HMMs with Respect to Recognition Performance

and Training Method
Hiroyuki Segi, Kazuo Onoe, Shoei Sato, Akio Kobayashiand Akio Ando (2014). Journal of Information

Technology Research (pp. 1-17).

www.irma-international.org/article/comparison-of-tied-mixture-and-state-clustered-hmms-with-respect-to-recognition-

performance-and-training-method/116635

Benchmarking with Product Life Cycle Analysis in the Semiconductor Industry
Edward Mozley Roche (1997). Information Resources Management Journal (pp. 4-15).

www.irma-international.org/article/benchmarking-product-life-cycle-analysis/51039

The Creation of a Commercial Software Development Company in a Developing Country for

Outsourcing Purposes
Sam Lubbe (2008). Information Communication Technologies: Concepts, Methodologies, Tools, and

Applications (pp. 862-869).

www.irma-international.org/chapter/creation-commercial-software-development-company/22705

http://www.igi-global.com/chapter/use-cases-uml/14160
http://www.igi-global.com/chapter/use-cases-uml/14160
http://www.irma-international.org/article/rethinking-the-project-management-process-by-using-unified-modeling-language/128209
http://www.irma-international.org/chapter/information-modeling-internet-age-challenges/22979
http://www.irma-international.org/article/comparison-of-tied-mixture-and-state-clustered-hmms-with-respect-to-recognition-performance-and-training-method/116635
http://www.irma-international.org/article/comparison-of-tied-mixture-and-state-clustered-hmms-with-respect-to-recognition-performance-and-training-method/116635
http://www.irma-international.org/article/benchmarking-product-life-cycle-analysis/51039
http://www.irma-international.org/chapter/creation-commercial-software-development-company/22705

